Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{6\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}+\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+3\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-4 va x+3 ning eng kichik umumiy karralisi \left(x-4\right)\left(x+3\right). \frac{6}{x-4} ni \frac{x+3}{x+3} marotabaga ko'paytirish. \frac{5}{x+3} ni \frac{x-4}{x-4} marotabaga ko'paytirish.
\frac{6\left(x+3\right)+5\left(x-4\right)}{\left(x-4\right)\left(x+3\right)}
\frac{6\left(x+3\right)}{\left(x-4\right)\left(x+3\right)} va \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{6x+18+5x-20}{\left(x-4\right)\left(x+3\right)}
6\left(x+3\right)+5\left(x-4\right) ichidagi ko‘paytirishlarni bajaring.
\frac{11x-2}{\left(x-4\right)\left(x+3\right)}
6x+18+5x-20 kabi iboralarga o‘xshab birlashtiring.
\frac{11x-2}{x^{2}-x-12}
\left(x-4\right)\left(x+3\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}+\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+3\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-4 va x+3 ning eng kichik umumiy karralisi \left(x-4\right)\left(x+3\right). \frac{6}{x-4} ni \frac{x+3}{x+3} marotabaga ko'paytirish. \frac{5}{x+3} ni \frac{x-4}{x-4} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6\left(x+3\right)+5\left(x-4\right)}{\left(x-4\right)\left(x+3\right)})
\frac{6\left(x+3\right)}{\left(x-4\right)\left(x+3\right)} va \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x+18+5x-20}{\left(x-4\right)\left(x+3\right)})
6\left(x+3\right)+5\left(x-4\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x-2}{\left(x-4\right)\left(x+3\right)})
6x+18+5x-20 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x-2}{x^{2}+3x-4x-12})
x-4 ifodaning har bir elementini x+3 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x-2}{x^{2}-x-12})
-x ni olish uchun 3x va -4x ni birlashtirish.
\frac{\left(x^{2}-x^{1}-12\right)\frac{\mathrm{d}}{\mathrm{d}x}(11x^{1}-2)-\left(11x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-12)}{\left(x^{2}-x^{1}-12\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-x^{1}-12\right)\times 11x^{1-1}-\left(11x^{1}-2\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-12\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-x^{1}-12\right)\times 11x^{0}-\left(11x^{1}-2\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-12\right)^{2}}
Qisqartirish.
\frac{x^{2}\times 11x^{0}-x^{1}\times 11x^{0}-12\times 11x^{0}-\left(11x^{1}-2\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-12\right)^{2}}
x^{2}-x^{1}-12 ni 11x^{0} marotabaga ko'paytirish.
\frac{x^{2}\times 11x^{0}-x^{1}\times 11x^{0}-12\times 11x^{0}-\left(11x^{1}\times 2x^{1}+11x^{1}\left(-1\right)x^{0}-2\times 2x^{1}-2\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-12\right)^{2}}
11x^{1}-2 ni 2x^{1}-x^{0} marotabaga ko'paytirish.
\frac{11x^{2}-11x^{1}-12\times 11x^{0}-\left(11\times 2x^{1+1}+11\left(-1\right)x^{1}-2\times 2x^{1}-2\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-12\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{11x^{2}-11x^{1}-132x^{0}-\left(22x^{2}-11x^{1}-4x^{1}+2x^{0}\right)}{\left(x^{2}-x^{1}-12\right)^{2}}
Qisqartirish.
\frac{-11x^{2}+4x^{1}-134x^{0}}{\left(x^{2}-x^{1}-12\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-11x^{2}+4x-134x^{0}}{\left(x^{2}-x-12\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-11x^{2}+4x-134}{\left(x^{2}-x-12\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.