x uchun yechish (complex solution)
x=\sqrt{6}-2\approx 0,449489743
x=-\left(\sqrt{6}+2\right)\approx -4,449489743
x uchun yechish
x=\sqrt{6}-2\approx 0,449489743
x=-\sqrt{6}-2\approx -4,449489743
Grafik
Baham ko'rish
Klipbordga nusxa olish
6-x\times 12=3x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{2} ga, x^{2},x ning eng kichik karralisiga ko‘paytiring.
6-x\times 12-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
6-12x-3x^{2}=0
-12 hosil qilish uchun -1 va 12 ni ko'paytirish.
-3x^{2}-12x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -12 ni b va 6 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
12 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
144 ni 72 ga qo'shish.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
216 ning kvadrat ildizini chiqarish.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
-12 ning teskarisi 12 ga teng.
x=\frac{12±6\sqrt{6}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{6\sqrt{6}+12}{-6}
x=\frac{12±6\sqrt{6}}{-6} tenglamasini yeching, bunda ± musbat. 12 ni 6\sqrt{6} ga qo'shish.
x=-\left(\sqrt{6}+2\right)
12+6\sqrt{6} ni -6 ga bo'lish.
x=\frac{12-6\sqrt{6}}{-6}
x=\frac{12±6\sqrt{6}}{-6} tenglamasini yeching, bunda ± manfiy. 12 dan 6\sqrt{6} ni ayirish.
x=\sqrt{6}-2
12-6\sqrt{6} ni -6 ga bo'lish.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
Tenglama yechildi.
6-x\times 12=3x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{2} ga, x^{2},x ning eng kichik karralisiga ko‘paytiring.
6-x\times 12-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
-x\times 12-3x^{2}=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-12x-3x^{2}=-6
-12 hosil qilish uchun -1 va 12 ni ko'paytirish.
-3x^{2}-12x=-6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+4x=-\frac{6}{-3}
-12 ni -3 ga bo'lish.
x^{2}+4x=2
-6 ni -3 ga bo'lish.
x^{2}+4x+2^{2}=2+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=2+4
2 kvadratini chiqarish.
x^{2}+4x+4=6
2 ni 4 ga qo'shish.
\left(x+2\right)^{2}=6
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\sqrt{6} x+2=-\sqrt{6}
Qisqartirish.
x=\sqrt{6}-2 x=-\sqrt{6}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
6-x\times 12=3x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{2} ga, x^{2},x ning eng kichik karralisiga ko‘paytiring.
6-x\times 12-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
6-12x-3x^{2}=0
-12 hosil qilish uchun -1 va 12 ni ko'paytirish.
-3x^{2}-12x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -12 ni b va 6 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
12 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
144 ni 72 ga qo'shish.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
216 ning kvadrat ildizini chiqarish.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
-12 ning teskarisi 12 ga teng.
x=\frac{12±6\sqrt{6}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{6\sqrt{6}+12}{-6}
x=\frac{12±6\sqrt{6}}{-6} tenglamasini yeching, bunda ± musbat. 12 ni 6\sqrt{6} ga qo'shish.
x=-\left(\sqrt{6}+2\right)
12+6\sqrt{6} ni -6 ga bo'lish.
x=\frac{12-6\sqrt{6}}{-6}
x=\frac{12±6\sqrt{6}}{-6} tenglamasini yeching, bunda ± manfiy. 12 dan 6\sqrt{6} ni ayirish.
x=\sqrt{6}-2
12-6\sqrt{6} ni -6 ga bo'lish.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
Tenglama yechildi.
6-x\times 12=3x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{2} ga, x^{2},x ning eng kichik karralisiga ko‘paytiring.
6-x\times 12-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
-x\times 12-3x^{2}=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-12x-3x^{2}=-6
-12 hosil qilish uchun -1 va 12 ni ko'paytirish.
-3x^{2}-12x=-6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+4x=-\frac{6}{-3}
-12 ni -3 ga bo'lish.
x^{2}+4x=2
-6 ni -3 ga bo'lish.
x^{2}+4x+2^{2}=2+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=2+4
2 kvadratini chiqarish.
x^{2}+4x+4=6
2 ni 4 ga qo'shish.
\left(x+2\right)^{2}=6
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\sqrt{6} x+2=-\sqrt{6}
Qisqartirish.
x=\sqrt{6}-2 x=-\sqrt{6}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}