x uchun yechish
x=-5
x=8
Grafik
Baham ko'rish
Klipbordga nusxa olish
5\times 6=\left(x+2\right)\left(x-5\right)
x qiymati -2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 10\left(x+2\right) ga, 2x+4,10 ning eng kichik karralisiga ko‘paytiring.
30=\left(x+2\right)\left(x-5\right)
30 hosil qilish uchun 5 va 6 ni ko'paytirish.
30=x^{2}-3x-10
x+2 ga x-5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x-10=30
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-3x-10-30=0
Ikkala tarafdan 30 ni ayirish.
x^{2}-3x-40=0
-40 olish uchun -10 dan 30 ni ayirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-40\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -40 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-40\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+160}}{2}
-4 ni -40 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{169}}{2}
9 ni 160 ga qo'shish.
x=\frac{-\left(-3\right)±13}{2}
169 ning kvadrat ildizini chiqarish.
x=\frac{3±13}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{16}{2}
x=\frac{3±13}{2} tenglamasini yeching, bunda ± musbat. 3 ni 13 ga qo'shish.
x=8
16 ni 2 ga bo'lish.
x=-\frac{10}{2}
x=\frac{3±13}{2} tenglamasini yeching, bunda ± manfiy. 3 dan 13 ni ayirish.
x=-5
-10 ni 2 ga bo'lish.
x=8 x=-5
Tenglama yechildi.
5\times 6=\left(x+2\right)\left(x-5\right)
x qiymati -2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 10\left(x+2\right) ga, 2x+4,10 ning eng kichik karralisiga ko‘paytiring.
30=\left(x+2\right)\left(x-5\right)
30 hosil qilish uchun 5 va 6 ni ko'paytirish.
30=x^{2}-3x-10
x+2 ga x-5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x-10=30
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-3x=30+10
10 ni ikki tarafga qo’shing.
x^{2}-3x=40
40 olish uchun 30 va 10'ni qo'shing.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=40+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=40+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{169}{4}
40 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{169}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{13}{2} x-\frac{3}{2}=-\frac{13}{2}
Qisqartirish.
x=8 x=-5
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}