Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{6+3\sqrt{3}}{4-\sqrt{3}}
Faktor: 27=3^{2}\times 3. \sqrt{3^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{3^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 3^{2} ning kvadrat ildizini chiqarish.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
\frac{6+3\sqrt{3}}{4-\sqrt{3}} maxrajini 4+\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Hisoblang: \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{16-3}
4 kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{13}
13 olish uchun 16 dan 3 ni ayirish.
\frac{24+6\sqrt{3}+12\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
6+3\sqrt{3} ifodaning har bir elementini 4+\sqrt{3} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{24+18\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
18\sqrt{3} ni olish uchun 6\sqrt{3} va 12\sqrt{3} ni birlashtirish.
\frac{24+18\sqrt{3}+3\times 3}{13}
\sqrt{3} kvadrati – 3.
\frac{24+18\sqrt{3}+9}{13}
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
\frac{33+18\sqrt{3}}{13}
33 olish uchun 24 va 9'ni qo'shing.