Baholash
\frac{18\sqrt{3}+33}{13}\approx 4,936685734
Baham ko'rish
Klipbordga nusxa olish
\frac{6+3\sqrt{3}}{4-\sqrt{3}}
Faktor: 27=3^{2}\times 3. \sqrt{3^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{3^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 3^{2} ning kvadrat ildizini chiqarish.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
\frac{6+3\sqrt{3}}{4-\sqrt{3}} maxrajini 4+\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Hisoblang: \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{16-3}
4 kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{13}
13 olish uchun 16 dan 3 ni ayirish.
\frac{24+6\sqrt{3}+12\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
6+3\sqrt{3} ifodaning har bir elementini 4+\sqrt{3} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{24+18\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
18\sqrt{3} ni olish uchun 6\sqrt{3} va 12\sqrt{3} ni birlashtirish.
\frac{24+18\sqrt{3}+3\times 3}{13}
\sqrt{3} kvadrati – 3.
\frac{24+18\sqrt{3}+9}{13}
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
\frac{33+18\sqrt{3}}{13}
33 olish uchun 24 va 9'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}