x uchun yechish
x=8
x=10
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { 5 x - 5 } { 2 x + 5 } = \frac { 2 x - 11 } { x - 5 }
Baham ko'rish
Klipbordga nusxa olish
\left(x-5\right)\left(5x-5\right)=\left(2x+5\right)\left(2x-11\right)
x qiymati -\frac{5}{2},5 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-5\right)\left(2x+5\right) ga, 2x+5,x-5 ning eng kichik karralisiga ko‘paytiring.
5x^{2}-30x+25=\left(2x+5\right)\left(2x-11\right)
x-5 ga 5x-5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-30x+25=4x^{2}-12x-55
2x+5 ga 2x-11 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-30x+25-4x^{2}=-12x-55
Ikkala tarafdan 4x^{2} ni ayirish.
x^{2}-30x+25=-12x-55
x^{2} ni olish uchun 5x^{2} va -4x^{2} ni birlashtirish.
x^{2}-30x+25+12x=-55
12x ni ikki tarafga qo’shing.
x^{2}-18x+25=-55
-18x ni olish uchun -30x va 12x ni birlashtirish.
x^{2}-18x+25+55=0
55 ni ikki tarafga qo’shing.
x^{2}-18x+80=0
80 olish uchun 25 va 55'ni qo'shing.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 80}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -18 ni b va 80 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 80}}{2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-320}}{2}
-4 ni 80 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{4}}{2}
324 ni -320 ga qo'shish.
x=\frac{-\left(-18\right)±2}{2}
4 ning kvadrat ildizini chiqarish.
x=\frac{18±2}{2}
-18 ning teskarisi 18 ga teng.
x=\frac{20}{2}
x=\frac{18±2}{2} tenglamasini yeching, bunda ± musbat. 18 ni 2 ga qo'shish.
x=10
20 ni 2 ga bo'lish.
x=\frac{16}{2}
x=\frac{18±2}{2} tenglamasini yeching, bunda ± manfiy. 18 dan 2 ni ayirish.
x=8
16 ni 2 ga bo'lish.
x=10 x=8
Tenglama yechildi.
\left(x-5\right)\left(5x-5\right)=\left(2x+5\right)\left(2x-11\right)
x qiymati -\frac{5}{2},5 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-5\right)\left(2x+5\right) ga, 2x+5,x-5 ning eng kichik karralisiga ko‘paytiring.
5x^{2}-30x+25=\left(2x+5\right)\left(2x-11\right)
x-5 ga 5x-5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-30x+25=4x^{2}-12x-55
2x+5 ga 2x-11 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-30x+25-4x^{2}=-12x-55
Ikkala tarafdan 4x^{2} ni ayirish.
x^{2}-30x+25=-12x-55
x^{2} ni olish uchun 5x^{2} va -4x^{2} ni birlashtirish.
x^{2}-30x+25+12x=-55
12x ni ikki tarafga qo’shing.
x^{2}-18x+25=-55
-18x ni olish uchun -30x va 12x ni birlashtirish.
x^{2}-18x=-55-25
Ikkala tarafdan 25 ni ayirish.
x^{2}-18x=-80
-80 olish uchun -55 dan 25 ni ayirish.
x^{2}-18x+\left(-9\right)^{2}=-80+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-80+81
-9 kvadratini chiqarish.
x^{2}-18x+81=1
-80 ni 81 ga qo'shish.
\left(x-9\right)^{2}=1
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=1 x-9=-1
Qisqartirish.
x=10 x=8
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}