Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+2\right)\times 5x=5
x qiymati -2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+2\right) ga, x-3,x^{2}-x-6 ning eng kichik karralisiga ko‘paytiring.
\left(5x+10\right)x=5
x+2 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x=5
5x+10 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x-5=0
Ikkala tarafdan 5 ni ayirish.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-5\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 10 ni b va -5 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-20\left(-5\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100+100}}{2\times 5}
-20 ni -5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{200}}{2\times 5}
100 ni 100 ga qo'shish.
x=\frac{-10±10\sqrt{2}}{2\times 5}
200 ning kvadrat ildizini chiqarish.
x=\frac{-10±10\sqrt{2}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{10\sqrt{2}-10}{10}
x=\frac{-10±10\sqrt{2}}{10} tenglamasini yeching, bunda ± musbat. -10 ni 10\sqrt{2} ga qo'shish.
x=\sqrt{2}-1
-10+10\sqrt{2} ni 10 ga bo'lish.
x=\frac{-10\sqrt{2}-10}{10}
x=\frac{-10±10\sqrt{2}}{10} tenglamasini yeching, bunda ± manfiy. -10 dan 10\sqrt{2} ni ayirish.
x=-\sqrt{2}-1
-10-10\sqrt{2} ni 10 ga bo'lish.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Tenglama yechildi.
\left(x+2\right)\times 5x=5
x qiymati -2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+2\right) ga, x-3,x^{2}-x-6 ning eng kichik karralisiga ko‘paytiring.
\left(5x+10\right)x=5
x+2 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x=5
5x+10 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5x^{2}+10x}{5}=\frac{5}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{10}{5}x=\frac{5}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{5}{5}
10 ni 5 ga bo'lish.
x^{2}+2x=1
5 ni 5 ga bo'lish.
x^{2}+2x+1^{2}=1+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=1+1
1 kvadratini chiqarish.
x^{2}+2x+1=2
1 ni 1 ga qo'shish.
\left(x+1\right)^{2}=2
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{2} x+1=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
\left(x+2\right)\times 5x=5
x qiymati -2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+2\right) ga, x-3,x^{2}-x-6 ning eng kichik karralisiga ko‘paytiring.
\left(5x+10\right)x=5
x+2 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x=5
5x+10 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x-5=0
Ikkala tarafdan 5 ni ayirish.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-5\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 10 ni b va -5 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-20\left(-5\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100+100}}{2\times 5}
-20 ni -5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{200}}{2\times 5}
100 ni 100 ga qo'shish.
x=\frac{-10±10\sqrt{2}}{2\times 5}
200 ning kvadrat ildizini chiqarish.
x=\frac{-10±10\sqrt{2}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{10\sqrt{2}-10}{10}
x=\frac{-10±10\sqrt{2}}{10} tenglamasini yeching, bunda ± musbat. -10 ni 10\sqrt{2} ga qo'shish.
x=\sqrt{2}-1
-10+10\sqrt{2} ni 10 ga bo'lish.
x=\frac{-10\sqrt{2}-10}{10}
x=\frac{-10±10\sqrt{2}}{10} tenglamasini yeching, bunda ± manfiy. -10 dan 10\sqrt{2} ni ayirish.
x=-\sqrt{2}-1
-10-10\sqrt{2} ni 10 ga bo'lish.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Tenglama yechildi.
\left(x+2\right)\times 5x=5
x qiymati -2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+2\right) ga, x-3,x^{2}-x-6 ning eng kichik karralisiga ko‘paytiring.
\left(5x+10\right)x=5
x+2 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x=5
5x+10 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5x^{2}+10x}{5}=\frac{5}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{10}{5}x=\frac{5}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{5}{5}
10 ni 5 ga bo'lish.
x^{2}+2x=1
5 ni 5 ga bo'lish.
x^{2}+2x+1^{2}=1+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=1+1
1 kvadratini chiqarish.
x^{2}+2x+1=2
1 ni 1 ga qo'shish.
\left(x+1\right)^{2}=2
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{2} x+1=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.