Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3}
Faktor: x^{2}-4x-21.
\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-7\right)\left(x+3\right) va x-7 ning eng kichik umumiy karralisi \left(x-7\right)\left(x+3\right). \frac{3}{x-7} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
\frac{5x}{\left(x-7\right)\left(x+3\right)} va \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
5x-3\left(x+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
5x-3x-9 kabi iboralarga o‘xshab birlashtiring.
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-7\right)\left(x+3\right) va x+3 ning eng kichik umumiy karralisi \left(x-7\right)\left(x+3\right). \frac{4}{x+3} ni \frac{x-7}{x-7} marotabaga ko'paytirish.
\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
\frac{2x-9}{\left(x-7\right)\left(x+3\right)} va \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)}
2x-9+4\left(x-7\right) ichidagi ko‘paytirishlarni bajaring.
\frac{6x-37}{\left(x-7\right)\left(x+3\right)}
2x-9+4x-28 kabi iboralarga o‘xshab birlashtiring.
\frac{6x-37}{x^{2}-4x-21}
\left(x-7\right)\left(x+3\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3})
Faktor: x^{2}-4x-21.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-7\right)\left(x+3\right) va x-7 ning eng kichik umumiy karralisi \left(x-7\right)\left(x+3\right). \frac{3}{x-7} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
\frac{5x}{\left(x-7\right)\left(x+3\right)} va \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
5x-3\left(x+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
5x-3x-9 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-7\right)\left(x+3\right) va x+3 ning eng kichik umumiy karralisi \left(x-7\right)\left(x+3\right). \frac{4}{x+3} ni \frac{x-7}{x-7} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
\frac{2x-9}{\left(x-7\right)\left(x+3\right)} va \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)})
2x-9+4\left(x-7\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{\left(x-7\right)\left(x+3\right)})
2x-9+4x-28 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{x^{2}-4x-21})
x-7 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{\left(x^{2}-4x^{1}-21\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-37)-\left(6x^{1}-37\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-21)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{1-1}-\left(6x^{1}-37\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Qisqartirish.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
x^{2}-4x^{1}-21 ni 6x^{0} marotabaga ko'paytirish.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}\times 2x^{1}+6x^{1}\left(-4\right)x^{0}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
6x^{1}-37 ni 2x^{1}-4x^{0} marotabaga ko'paytirish.
\frac{6x^{2}-4\times 6x^{1}-21\times 6x^{0}-\left(6\times 2x^{1+1}+6\left(-4\right)x^{1}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{6x^{2}-24x^{1}-126x^{0}-\left(12x^{2}-24x^{1}-74x^{1}+148x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Qisqartirish.
\frac{-6x^{2}+74x^{1}-274x^{0}}{\left(x^{2}-4x^{1}-21\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-6x^{2}+74x-274x^{0}}{\left(x^{2}-4x-21\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-6x^{2}+74x-274}{\left(x^{2}-4x-21\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.