x uchun yechish (complex solution)
x=\frac{-6\sqrt{6}i+15}{49}\approx 0,306122449-0,29993752i
x=\frac{15+6\sqrt{6}i}{49}\approx 0,306122449+0,29993752i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(3x-1\right)\left(5x+9\right)-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
x qiymati \frac{1}{8},\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(3x-1\right)\left(8x-1\right) ga, 8x-1,3x-1 ning eng kichik karralisiga ko‘paytiring.
15x^{2}+22x-9-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
3x-1 ga 5x+9 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
15x^{2}+22x-9-\left(40x^{2}+3x-1\right)=\left(3x-1\right)\left(8x-1\right)
8x-1 ga 5x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
15x^{2}+22x-9-40x^{2}-3x+1=\left(3x-1\right)\left(8x-1\right)
40x^{2}+3x-1 teskarisini topish uchun har birining teskarisini toping.
-25x^{2}+22x-9-3x+1=\left(3x-1\right)\left(8x-1\right)
-25x^{2} ni olish uchun 15x^{2} va -40x^{2} ni birlashtirish.
-25x^{2}+19x-9+1=\left(3x-1\right)\left(8x-1\right)
19x ni olish uchun 22x va -3x ni birlashtirish.
-25x^{2}+19x-8=\left(3x-1\right)\left(8x-1\right)
-8 olish uchun -9 va 1'ni qo'shing.
-25x^{2}+19x-8=24x^{2}-11x+1
3x-1 ga 8x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-25x^{2}+19x-8-24x^{2}=-11x+1
Ikkala tarafdan 24x^{2} ni ayirish.
-49x^{2}+19x-8=-11x+1
-49x^{2} ni olish uchun -25x^{2} va -24x^{2} ni birlashtirish.
-49x^{2}+19x-8+11x=1
11x ni ikki tarafga qo’shing.
-49x^{2}+30x-8=1
30x ni olish uchun 19x va 11x ni birlashtirish.
-49x^{2}+30x-8-1=0
Ikkala tarafdan 1 ni ayirish.
-49x^{2}+30x-9=0
-9 olish uchun -8 dan 1 ni ayirish.
x=\frac{-30±\sqrt{30^{2}-4\left(-49\right)\left(-9\right)}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 30 ni b va -9 ni c bilan almashtiring.
x=\frac{-30±\sqrt{900-4\left(-49\right)\left(-9\right)}}{2\left(-49\right)}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900+196\left(-9\right)}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{900-1764}}{2\left(-49\right)}
196 ni -9 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{-864}}{2\left(-49\right)}
900 ni -1764 ga qo'shish.
x=\frac{-30±12\sqrt{6}i}{2\left(-49\right)}
-864 ning kvadrat ildizini chiqarish.
x=\frac{-30±12\sqrt{6}i}{-98}
2 ni -49 marotabaga ko'paytirish.
x=\frac{-30+12\sqrt{6}i}{-98}
x=\frac{-30±12\sqrt{6}i}{-98} tenglamasini yeching, bunda ± musbat. -30 ni 12i\sqrt{6} ga qo'shish.
x=\frac{-6\sqrt{6}i+15}{49}
-30+12i\sqrt{6} ni -98 ga bo'lish.
x=\frac{-12\sqrt{6}i-30}{-98}
x=\frac{-30±12\sqrt{6}i}{-98} tenglamasini yeching, bunda ± manfiy. -30 dan 12i\sqrt{6} ni ayirish.
x=\frac{15+6\sqrt{6}i}{49}
-30-12i\sqrt{6} ni -98 ga bo'lish.
x=\frac{-6\sqrt{6}i+15}{49} x=\frac{15+6\sqrt{6}i}{49}
Tenglama yechildi.
\left(3x-1\right)\left(5x+9\right)-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
x qiymati \frac{1}{8},\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(3x-1\right)\left(8x-1\right) ga, 8x-1,3x-1 ning eng kichik karralisiga ko‘paytiring.
15x^{2}+22x-9-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
3x-1 ga 5x+9 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
15x^{2}+22x-9-\left(40x^{2}+3x-1\right)=\left(3x-1\right)\left(8x-1\right)
8x-1 ga 5x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
15x^{2}+22x-9-40x^{2}-3x+1=\left(3x-1\right)\left(8x-1\right)
40x^{2}+3x-1 teskarisini topish uchun har birining teskarisini toping.
-25x^{2}+22x-9-3x+1=\left(3x-1\right)\left(8x-1\right)
-25x^{2} ni olish uchun 15x^{2} va -40x^{2} ni birlashtirish.
-25x^{2}+19x-9+1=\left(3x-1\right)\left(8x-1\right)
19x ni olish uchun 22x va -3x ni birlashtirish.
-25x^{2}+19x-8=\left(3x-1\right)\left(8x-1\right)
-8 olish uchun -9 va 1'ni qo'shing.
-25x^{2}+19x-8=24x^{2}-11x+1
3x-1 ga 8x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-25x^{2}+19x-8-24x^{2}=-11x+1
Ikkala tarafdan 24x^{2} ni ayirish.
-49x^{2}+19x-8=-11x+1
-49x^{2} ni olish uchun -25x^{2} va -24x^{2} ni birlashtirish.
-49x^{2}+19x-8+11x=1
11x ni ikki tarafga qo’shing.
-49x^{2}+30x-8=1
30x ni olish uchun 19x va 11x ni birlashtirish.
-49x^{2}+30x=1+8
8 ni ikki tarafga qo’shing.
-49x^{2}+30x=9
9 olish uchun 1 va 8'ni qo'shing.
\frac{-49x^{2}+30x}{-49}=\frac{9}{-49}
Ikki tarafini -49 ga bo‘ling.
x^{2}+\frac{30}{-49}x=\frac{9}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{30}{49}x=\frac{9}{-49}
30 ni -49 ga bo'lish.
x^{2}-\frac{30}{49}x=-\frac{9}{49}
9 ni -49 ga bo'lish.
x^{2}-\frac{30}{49}x+\left(-\frac{15}{49}\right)^{2}=-\frac{9}{49}+\left(-\frac{15}{49}\right)^{2}
-\frac{30}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{49} olish uchun. Keyin, -\frac{15}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{30}{49}x+\frac{225}{2401}=-\frac{9}{49}+\frac{225}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{49} kvadratini chiqarish.
x^{2}-\frac{30}{49}x+\frac{225}{2401}=-\frac{216}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{49} ni \frac{225}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{15}{49}\right)^{2}=-\frac{216}{2401}
x^{2}-\frac{30}{49}x+\frac{225}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{49}\right)^{2}}=\sqrt{-\frac{216}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{49}=\frac{6\sqrt{6}i}{49} x-\frac{15}{49}=-\frac{6\sqrt{6}i}{49}
Qisqartirish.
x=\frac{15+6\sqrt{6}i}{49} x=\frac{-6\sqrt{6}i+15}{49}
\frac{15}{49} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}