Asosiy tarkibga oʻtish
n uchun yechish (complex solution)
Tick mark Image
n uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga ko'paytirish.
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
2n ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
2nx-2n ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Ikkala tarafdan 2nx^{2} ni ayirish.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
3nx^{2} ni olish uchun 5nx^{2} va -2nx^{2} ni birlashtirish.
3nx^{2}-5x-nx-1+2n=x^{2}-1
2n ni ikki tarafga qo’shing.
3nx^{2}-nx-1+2n=x^{2}-1+5x
5x ni ikki tarafga qo’shing.
3nx^{2}-nx+2n=x^{2}-1+5x+1
1 ni ikki tarafga qo’shing.
3nx^{2}-nx+2n=x^{2}+5x
0 olish uchun -1 va 1'ni qo'shing.
\left(3x^{2}-x+2\right)n=x^{2}+5x
n'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Ikki tarafini 3x^{2}-x+2 ga bo‘ling.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
3x^{2}-x+2 ga bo'lish 3x^{2}-x+2 ga ko'paytirishni bekor qiladi.
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga ko'paytirish.
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
2n ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
2nx-2n ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Ikkala tarafdan 2nx^{2} ni ayirish.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
3nx^{2} ni olish uchun 5nx^{2} va -2nx^{2} ni birlashtirish.
3nx^{2}-5x-nx-1+2n=x^{2}-1
2n ni ikki tarafga qo’shing.
3nx^{2}-nx-1+2n=x^{2}-1+5x
5x ni ikki tarafga qo’shing.
3nx^{2}-nx+2n=x^{2}-1+5x+1
1 ni ikki tarafga qo’shing.
3nx^{2}-nx+2n=x^{2}+5x
0 olish uchun -1 va 1'ni qo'shing.
\left(3x^{2}-x+2\right)n=x^{2}+5x
n'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Ikki tarafini 3x^{2}-x+2 ga bo‘ling.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
3x^{2}-x+2 ga bo'lish 3x^{2}-x+2 ga ko'paytirishni bekor qiladi.