Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
\frac{5-\sqrt{7}}{5+\sqrt{7}} maxrajini 5-\sqrt{7} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Hisoblang: \left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{25-7}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
5 kvadratini chiqarish. \sqrt{7} kvadratini chiqarish.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
18 olish uchun 25 dan 7 ni ayirish.
\frac{\left(5-\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
\left(5-\sqrt{7}\right)^{2} hosil qilish uchun 5-\sqrt{7} va 5-\sqrt{7} ni ko'paytirish.
\frac{25-10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5-\sqrt{7}\right)^{2} kengaytirilishi uchun ishlating.
\frac{25-10\sqrt{7}+7}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
\sqrt{7} kvadrati – 7.
\frac{32-10\sqrt{7}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
32 olish uchun 25 va 7'ni qo'shing.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
\frac{5+\sqrt{7}}{5-\sqrt{7}} maxrajini 5+\sqrt{7} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}
Hisoblang: \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{25-7}
5 kvadratini chiqarish. \sqrt{7} kvadratini chiqarish.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{18}
18 olish uchun 25 dan 7 ni ayirish.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)^{2}}{18}
\left(5+\sqrt{7}\right)^{2} hosil qilish uchun 5+\sqrt{7} va 5+\sqrt{7} ni ko'paytirish.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5+\sqrt{7}\right)^{2} kengaytirilishi uchun ishlating.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+7}{18}
\sqrt{7} kvadrati – 7.
\frac{32-10\sqrt{7}}{18}+\frac{32+10\sqrt{7}}{18}
32 olish uchun 25 va 7'ni qo'shing.
\frac{32-10\sqrt{7}+32+10\sqrt{7}}{18}
\frac{32-10\sqrt{7}}{18} va \frac{32+10\sqrt{7}}{18} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{64}{18}
32-10\sqrt{7}+32+10\sqrt{7} hisob-kitobini qiling.
\frac{32}{9}
\frac{64}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.