x uchun yechish
x = \frac{\sqrt{11} + 11}{4} \approx 3,579156198
x = \frac{11 - \sqrt{11}}{4} \approx 1,920843802
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-2\right)\times 5-\left(x-3\right)\left(x-1\right)=7\left(x-3\right)\left(x-2\right)
x qiymati 2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right) ga, x-3,x-2 ning eng kichik karralisiga ko‘paytiring.
5x-10-\left(x-3\right)\left(x-1\right)=7\left(x-3\right)\left(x-2\right)
x-2 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x-10-\left(x^{2}-4x+3\right)=7\left(x-3\right)\left(x-2\right)
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x-10-x^{2}+4x-3=7\left(x-3\right)\left(x-2\right)
x^{2}-4x+3 teskarisini topish uchun har birining teskarisini toping.
9x-10-x^{2}-3=7\left(x-3\right)\left(x-2\right)
9x ni olish uchun 5x va 4x ni birlashtirish.
9x-13-x^{2}=7\left(x-3\right)\left(x-2\right)
-13 olish uchun -10 dan 3 ni ayirish.
9x-13-x^{2}=\left(7x-21\right)\left(x-2\right)
7 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x-13-x^{2}=7x^{2}-35x+42
7x-21 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9x-13-x^{2}-7x^{2}=-35x+42
Ikkala tarafdan 7x^{2} ni ayirish.
9x-13-8x^{2}=-35x+42
-8x^{2} ni olish uchun -x^{2} va -7x^{2} ni birlashtirish.
9x-13-8x^{2}+35x=42
35x ni ikki tarafga qo’shing.
44x-13-8x^{2}=42
44x ni olish uchun 9x va 35x ni birlashtirish.
44x-13-8x^{2}-42=0
Ikkala tarafdan 42 ni ayirish.
44x-55-8x^{2}=0
-55 olish uchun -13 dan 42 ni ayirish.
-8x^{2}+44x-55=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-44±\sqrt{44^{2}-4\left(-8\right)\left(-55\right)}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 44 ni b va -55 ni c bilan almashtiring.
x=\frac{-44±\sqrt{1936-4\left(-8\right)\left(-55\right)}}{2\left(-8\right)}
44 kvadratini chiqarish.
x=\frac{-44±\sqrt{1936+32\left(-55\right)}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-44±\sqrt{1936-1760}}{2\left(-8\right)}
32 ni -55 marotabaga ko'paytirish.
x=\frac{-44±\sqrt{176}}{2\left(-8\right)}
1936 ni -1760 ga qo'shish.
x=\frac{-44±4\sqrt{11}}{2\left(-8\right)}
176 ning kvadrat ildizini chiqarish.
x=\frac{-44±4\sqrt{11}}{-16}
2 ni -8 marotabaga ko'paytirish.
x=\frac{4\sqrt{11}-44}{-16}
x=\frac{-44±4\sqrt{11}}{-16} tenglamasini yeching, bunda ± musbat. -44 ni 4\sqrt{11} ga qo'shish.
x=\frac{11-\sqrt{11}}{4}
-44+4\sqrt{11} ni -16 ga bo'lish.
x=\frac{-4\sqrt{11}-44}{-16}
x=\frac{-44±4\sqrt{11}}{-16} tenglamasini yeching, bunda ± manfiy. -44 dan 4\sqrt{11} ni ayirish.
x=\frac{\sqrt{11}+11}{4}
-44-4\sqrt{11} ni -16 ga bo'lish.
x=\frac{11-\sqrt{11}}{4} x=\frac{\sqrt{11}+11}{4}
Tenglama yechildi.
\left(x-2\right)\times 5-\left(x-3\right)\left(x-1\right)=7\left(x-3\right)\left(x-2\right)
x qiymati 2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right) ga, x-3,x-2 ning eng kichik karralisiga ko‘paytiring.
5x-10-\left(x-3\right)\left(x-1\right)=7\left(x-3\right)\left(x-2\right)
x-2 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x-10-\left(x^{2}-4x+3\right)=7\left(x-3\right)\left(x-2\right)
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x-10-x^{2}+4x-3=7\left(x-3\right)\left(x-2\right)
x^{2}-4x+3 teskarisini topish uchun har birining teskarisini toping.
9x-10-x^{2}-3=7\left(x-3\right)\left(x-2\right)
9x ni olish uchun 5x va 4x ni birlashtirish.
9x-13-x^{2}=7\left(x-3\right)\left(x-2\right)
-13 olish uchun -10 dan 3 ni ayirish.
9x-13-x^{2}=\left(7x-21\right)\left(x-2\right)
7 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x-13-x^{2}=7x^{2}-35x+42
7x-21 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9x-13-x^{2}-7x^{2}=-35x+42
Ikkala tarafdan 7x^{2} ni ayirish.
9x-13-8x^{2}=-35x+42
-8x^{2} ni olish uchun -x^{2} va -7x^{2} ni birlashtirish.
9x-13-8x^{2}+35x=42
35x ni ikki tarafga qo’shing.
44x-13-8x^{2}=42
44x ni olish uchun 9x va 35x ni birlashtirish.
44x-8x^{2}=42+13
13 ni ikki tarafga qo’shing.
44x-8x^{2}=55
55 olish uchun 42 va 13'ni qo'shing.
-8x^{2}+44x=55
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-8x^{2}+44x}{-8}=\frac{55}{-8}
Ikki tarafini -8 ga bo‘ling.
x^{2}+\frac{44}{-8}x=\frac{55}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=\frac{55}{-8}
\frac{44}{-8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{11}{2}x=-\frac{55}{8}
55 ni -8 ga bo'lish.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{55}{8}+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{55}{8}+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{11}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{55}{8} ni \frac{121}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{11}{4}\right)^{2}=\frac{11}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{11}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{\sqrt{11}}{4} x-\frac{11}{4}=-\frac{\sqrt{11}}{4}
Qisqartirish.
x=\frac{\sqrt{11}+11}{4} x=\frac{11-\sqrt{11}}{4}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}