Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x^{2}-4\right)\times 5+\left(x-3\right)\left(x+2\right)\times 2=\left(x-2\right)x
x qiymati -2,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x+2\right) ga, x-3,x-2,x^{2}-x-6 ning eng kichik karralisiga ko‘paytiring.
5x^{2}-20+\left(x-3\right)\left(x+2\right)\times 2=\left(x-2\right)x
x^{2}-4 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}-20+\left(x^{2}-x-6\right)\times 2=\left(x-2\right)x
x-3 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-20+2x^{2}-2x-12=\left(x-2\right)x
x^{2}-x-6 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-20-2x-12=\left(x-2\right)x
7x^{2} ni olish uchun 5x^{2} va 2x^{2} ni birlashtirish.
7x^{2}-32-2x=\left(x-2\right)x
-32 olish uchun -20 dan 12 ni ayirish.
7x^{2}-32-2x=x^{2}-2x
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-32-2x-x^{2}=-2x
Ikkala tarafdan x^{2} ni ayirish.
6x^{2}-32-2x=-2x
6x^{2} ni olish uchun 7x^{2} va -x^{2} ni birlashtirish.
6x^{2}-32-2x+2x=0
2x ni ikki tarafga qo’shing.
6x^{2}-32=0
0 ni olish uchun -2x va 2x ni birlashtirish.
6x^{2}=32
32 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{32}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=\frac{16}{3}
\frac{32}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{4\sqrt{3}}{3} x=-\frac{4\sqrt{3}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(x^{2}-4\right)\times 5+\left(x-3\right)\left(x+2\right)\times 2=\left(x-2\right)x
x qiymati -2,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x+2\right) ga, x-3,x-2,x^{2}-x-6 ning eng kichik karralisiga ko‘paytiring.
5x^{2}-20+\left(x-3\right)\left(x+2\right)\times 2=\left(x-2\right)x
x^{2}-4 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}-20+\left(x^{2}-x-6\right)\times 2=\left(x-2\right)x
x-3 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-20+2x^{2}-2x-12=\left(x-2\right)x
x^{2}-x-6 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-20-2x-12=\left(x-2\right)x
7x^{2} ni olish uchun 5x^{2} va 2x^{2} ni birlashtirish.
7x^{2}-32-2x=\left(x-2\right)x
-32 olish uchun -20 dan 12 ni ayirish.
7x^{2}-32-2x=x^{2}-2x
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-32-2x-x^{2}=-2x
Ikkala tarafdan x^{2} ni ayirish.
6x^{2}-32-2x=-2x
6x^{2} ni olish uchun 7x^{2} va -x^{2} ni birlashtirish.
6x^{2}-32-2x+2x=0
2x ni ikki tarafga qo’shing.
6x^{2}-32=0
0 ni olish uchun -2x va 2x ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-32\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va -32 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\left(-32\right)}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\left(-32\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{768}}{2\times 6}
-24 ni -32 marotabaga ko'paytirish.
x=\frac{0±16\sqrt{3}}{2\times 6}
768 ning kvadrat ildizini chiqarish.
x=\frac{0±16\sqrt{3}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{4\sqrt{3}}{3}
x=\frac{0±16\sqrt{3}}{12} tenglamasini yeching, bunda ± musbat.
x=-\frac{4\sqrt{3}}{3}
x=\frac{0±16\sqrt{3}}{12} tenglamasini yeching, bunda ± manfiy.
x=\frac{4\sqrt{3}}{3} x=-\frac{4\sqrt{3}}{3}
Tenglama yechildi.