Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(x+6\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x qiymati -6,0,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-2\right)\left(x+6\right) ga, x-2,x+6,x ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}+6x\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ga x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x^{2}+6x ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-\left(x^{2}-2x\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-\left(3x^{2}-6x\right)=\left(x-2\right)\left(x+6\right)\times 4
x^{2}-2x ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-3x^{2}+6x=\left(x-2\right)\left(x+6\right)\times 4
3x^{2}-6x teskarisini topish uchun har birining teskarisini toping.
2x^{2}+30x+6x=\left(x-2\right)\left(x+6\right)\times 4
2x^{2} ni olish uchun 5x^{2} va -3x^{2} ni birlashtirish.
2x^{2}+36x=\left(x-2\right)\left(x+6\right)\times 4
36x ni olish uchun 30x va 6x ni birlashtirish.
2x^{2}+36x=\left(x^{2}+4x-12\right)\times 4
x-2 ga x+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+36x=4x^{2}+16x-48
x^{2}+4x-12 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+36x-4x^{2}=16x-48
Ikkala tarafdan 4x^{2} ni ayirish.
-2x^{2}+36x=16x-48
-2x^{2} ni olish uchun 2x^{2} va -4x^{2} ni birlashtirish.
-2x^{2}+36x-16x=-48
Ikkala tarafdan 16x ni ayirish.
-2x^{2}+20x=-48
20x ni olish uchun 36x va -16x ni birlashtirish.
-2x^{2}+20x+48=0
48 ni ikki tarafga qo’shing.
x=\frac{-20±\sqrt{20^{2}-4\left(-2\right)\times 48}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 20 ni b va 48 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-2\right)\times 48}}{2\left(-2\right)}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+8\times 48}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400+384}}{2\left(-2\right)}
8 ni 48 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{784}}{2\left(-2\right)}
400 ni 384 ga qo'shish.
x=\frac{-20±28}{2\left(-2\right)}
784 ning kvadrat ildizini chiqarish.
x=\frac{-20±28}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{8}{-4}
x=\frac{-20±28}{-4} tenglamasini yeching, bunda ± musbat. -20 ni 28 ga qo'shish.
x=-2
8 ni -4 ga bo'lish.
x=-\frac{48}{-4}
x=\frac{-20±28}{-4} tenglamasini yeching, bunda ± manfiy. -20 dan 28 ni ayirish.
x=12
-48 ni -4 ga bo'lish.
x=-2 x=12
Tenglama yechildi.
x\left(x+6\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x qiymati -6,0,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-2\right)\left(x+6\right) ga, x-2,x+6,x ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}+6x\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ga x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x^{2}+6x ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-\left(x^{2}-2x\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-\left(3x^{2}-6x\right)=\left(x-2\right)\left(x+6\right)\times 4
x^{2}-2x ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+30x-3x^{2}+6x=\left(x-2\right)\left(x+6\right)\times 4
3x^{2}-6x teskarisini topish uchun har birining teskarisini toping.
2x^{2}+30x+6x=\left(x-2\right)\left(x+6\right)\times 4
2x^{2} ni olish uchun 5x^{2} va -3x^{2} ni birlashtirish.
2x^{2}+36x=\left(x-2\right)\left(x+6\right)\times 4
36x ni olish uchun 30x va 6x ni birlashtirish.
2x^{2}+36x=\left(x^{2}+4x-12\right)\times 4
x-2 ga x+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+36x=4x^{2}+16x-48
x^{2}+4x-12 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+36x-4x^{2}=16x-48
Ikkala tarafdan 4x^{2} ni ayirish.
-2x^{2}+36x=16x-48
-2x^{2} ni olish uchun 2x^{2} va -4x^{2} ni birlashtirish.
-2x^{2}+36x-16x=-48
Ikkala tarafdan 16x ni ayirish.
-2x^{2}+20x=-48
20x ni olish uchun 36x va -16x ni birlashtirish.
\frac{-2x^{2}+20x}{-2}=-\frac{48}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{20}{-2}x=-\frac{48}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-10x=-\frac{48}{-2}
20 ni -2 ga bo'lish.
x^{2}-10x=24
-48 ni -2 ga bo'lish.
x^{2}-10x+\left(-5\right)^{2}=24+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=24+25
-5 kvadratini chiqarish.
x^{2}-10x+25=49
24 ni 25 ga qo'shish.
\left(x-5\right)^{2}=49
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{49}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=7 x-5=-7
Qisqartirish.
x=12 x=-2
5 ni tenglamaning ikkala tarafiga qo'shish.