Baholash
1
Omil
1
Baham ko'rish
Klipbordga nusxa olish
\frac{5\left(4+\sqrt{11}\right)}{\left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right)}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
\frac{5}{4-\sqrt{11}} maxrajini 4+\sqrt{11} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{5\left(4+\sqrt{11}\right)}{4^{2}-\left(\sqrt{11}\right)^{2}}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Hisoblang: \left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(4+\sqrt{11}\right)}{16-11}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
4 kvadratini chiqarish. \sqrt{11} kvadratini chiqarish.
\frac{5\left(4+\sqrt{11}\right)}{5}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
5 olish uchun 16 dan 11 ni ayirish.
4+\sqrt{11}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
5 va 5 ni qisqartiring.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}-\frac{2}{3+\sqrt{7}}
\frac{4}{\sqrt{11}-\sqrt{7}} maxrajini \sqrt{11}+\sqrt{7} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{7}\right)^{2}}-\frac{2}{3+\sqrt{7}}
Hisoblang: \left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{11-7}-\frac{2}{3+\sqrt{7}}
\sqrt{11} kvadratini chiqarish. \sqrt{7} kvadratini chiqarish.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{4}-\frac{2}{3+\sqrt{7}}
4 olish uchun 11 dan 7 ni ayirish.
4+\sqrt{11}-\left(\sqrt{11}+\sqrt{7}\right)-\frac{2}{3+\sqrt{7}}
4 va 4 ni qisqartiring.
4+\sqrt{11}-\sqrt{11}-\sqrt{7}-\frac{2}{3+\sqrt{7}}
\sqrt{11}+\sqrt{7} teskarisini topish uchun har birining teskarisini toping.
4-\sqrt{7}-\frac{2}{3+\sqrt{7}}
0 ni olish uchun \sqrt{11} va -\sqrt{11} ni birlashtirish.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}
\frac{2}{3+\sqrt{7}} maxrajini 3-\sqrt{7} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Hisoblang: \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{9-7}
3 kvadratini chiqarish. \sqrt{7} kvadratini chiqarish.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{2}
2 olish uchun 9 dan 7 ni ayirish.
4-\sqrt{7}-\left(3-\sqrt{7}\right)
2 va 2 ni qisqartiring.
4-\sqrt{7}-3-\left(-\sqrt{7}\right)
3-\sqrt{7} teskarisini topish uchun har birining teskarisini toping.
4-\sqrt{7}-3+\sqrt{7}
-\sqrt{7} ning teskarisi \sqrt{7} ga teng.
1-\sqrt{7}+\sqrt{7}
1 olish uchun 4 dan 3 ni ayirish.
1
0 ni olish uchun -\sqrt{7} va \sqrt{7} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}