Baholash
\frac{61}{98}\approx 0,62244898
Omil
\frac{61}{2 \cdot 7 ^ {2}} = 0,6224489795918368
Baham ko'rish
Klipbordga nusxa olish
\frac{5}{21}\times \frac{7+5}{7}+\frac{2}{4}\times \frac{3}{7}
7 hosil qilish uchun 1 va 7 ni ko'paytirish.
\frac{5}{21}\times \frac{12}{7}+\frac{2}{4}\times \frac{3}{7}
12 olish uchun 7 va 5'ni qo'shing.
\frac{5\times 12}{21\times 7}+\frac{2}{4}\times \frac{3}{7}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{5}{21} ni \frac{12}{7} ga ko‘paytiring.
\frac{60}{147}+\frac{2}{4}\times \frac{3}{7}
\frac{5\times 12}{21\times 7} kasridagi ko‘paytirishlarni bajaring.
\frac{20}{49}+\frac{2}{4}\times \frac{3}{7}
\frac{60}{147} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{20}{49}+\frac{1}{2}\times \frac{3}{7}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{20}{49}+\frac{1\times 3}{2\times 7}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{3}{7} ga ko‘paytiring.
\frac{20}{49}+\frac{3}{14}
\frac{1\times 3}{2\times 7} kasridagi ko‘paytirishlarni bajaring.
\frac{40}{98}+\frac{21}{98}
49 va 14 ning eng kichik umumiy karralisi 98 ga teng. \frac{20}{49} va \frac{3}{14} ni 98 maxraj bilan kasrlarga aylantirib oling.
\frac{40+21}{98}
\frac{40}{98} va \frac{21}{98} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{61}{98}
61 olish uchun 40 va 21'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}