Baholash
\frac{2}{y\left(2x-3y\right)}
x ga nisbatan hosilani topish
-\frac{4}{y\left(2x-3y\right)^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{5}{\left(x+y\right)\left(2x-3y\right)}+\frac{1}{y\left(x+y\right)}
Faktor: 2x^{2}-xy-3y^{2}. Faktor: xy+y^{2}.
\frac{5y}{y\left(x+y\right)\left(2x-3y\right)}+\frac{2x-3y}{y\left(x+y\right)\left(2x-3y\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x+y\right)\left(2x-3y\right) va y\left(x+y\right) ning eng kichik umumiy karralisi y\left(x+y\right)\left(2x-3y\right). \frac{5}{\left(x+y\right)\left(2x-3y\right)} ni \frac{y}{y} marotabaga ko'paytirish. \frac{1}{y\left(x+y\right)} ni \frac{2x-3y}{2x-3y} marotabaga ko'paytirish.
\frac{5y+2x-3y}{y\left(x+y\right)\left(2x-3y\right)}
\frac{5y}{y\left(x+y\right)\left(2x-3y\right)} va \frac{2x-3y}{y\left(x+y\right)\left(2x-3y\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2y+2x}{y\left(x+y\right)\left(2x-3y\right)}
5y+2x-3y kabi iboralarga o‘xshab birlashtiring.
\frac{2\left(x+y\right)}{y\left(x+y\right)\left(2x-3y\right)}
\frac{2y+2x}{y\left(x+y\right)\left(2x-3y\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{2}{y\left(2x-3y\right)}
Surat va maxrajdagi ikkala x+y ni qisqartiring.
\frac{2}{2xy-3y^{2}}
y\left(2x-3y\right) ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}