Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2\left(x-2\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-2\right)\left(x+2\right) ga, 2,x-2,x^{2}-4 ning eng kichik karralisiga ko‘paytiring.
\left(2x-4\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
2 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(2x^{2}-8\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
2x-4 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-20+\left(2x+4\right)\times 5=2\times 6
2x^{2}-8 ga \frac{5}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}-20+10x+20=2\times 6
2x+4 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x=2\times 6
0 olish uchun -20 va 20'ni qo'shing.
5x^{2}+10x=12
12 hosil qilish uchun 2 va 6 ni ko'paytirish.
5x^{2}+10x-12=0
Ikkala tarafdan 12 ni ayirish.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-12\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 10 ni b va -12 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 5\left(-12\right)}}{2\times 5}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-20\left(-12\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100+240}}{2\times 5}
-20 ni -12 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{340}}{2\times 5}
100 ni 240 ga qo'shish.
x=\frac{-10±2\sqrt{85}}{2\times 5}
340 ning kvadrat ildizini chiqarish.
x=\frac{-10±2\sqrt{85}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{2\sqrt{85}-10}{10}
x=\frac{-10±2\sqrt{85}}{10} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{85} ga qo'shish.
x=\frac{\sqrt{85}}{5}-1
-10+2\sqrt{85} ni 10 ga bo'lish.
x=\frac{-2\sqrt{85}-10}{10}
x=\frac{-10±2\sqrt{85}}{10} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{85} ni ayirish.
x=-\frac{\sqrt{85}}{5}-1
-10-2\sqrt{85} ni 10 ga bo'lish.
x=\frac{\sqrt{85}}{5}-1 x=-\frac{\sqrt{85}}{5}-1
Tenglama yechildi.
2\left(x-2\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-2\right)\left(x+2\right) ga, 2,x-2,x^{2}-4 ning eng kichik karralisiga ko‘paytiring.
\left(2x-4\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
2 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(2x^{2}-8\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
2x-4 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x^{2}-20+\left(2x+4\right)\times 5=2\times 6
2x^{2}-8 ga \frac{5}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}-20+10x+20=2\times 6
2x+4 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+10x=2\times 6
0 olish uchun -20 va 20'ni qo'shing.
5x^{2}+10x=12
12 hosil qilish uchun 2 va 6 ni ko'paytirish.
\frac{5x^{2}+10x}{5}=\frac{12}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{10}{5}x=\frac{12}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{12}{5}
10 ni 5 ga bo'lish.
x^{2}+2x+1^{2}=\frac{12}{5}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=\frac{12}{5}+1
1 kvadratini chiqarish.
x^{2}+2x+1=\frac{17}{5}
\frac{12}{5} ni 1 ga qo'shish.
\left(x+1\right)^{2}=\frac{17}{5}
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{17}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\frac{\sqrt{85}}{5} x+1=-\frac{\sqrt{85}}{5}
Qisqartirish.
x=\frac{\sqrt{85}}{5}-1 x=-\frac{\sqrt{85}}{5}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.