m uchun yechish
m=-3
m uchun yechish (complex solution)
m=\frac{2\pi n_{1}i}{\ln(5)}-3
n_{1}\in \mathrm{Z}
Viktorina
Algebra
\frac { 5 ^ { m } \times 5 ^ { 3 } \times 5 ^ { - 2 } } { 5 ^ { - 3 } } = 5 ^ { 1 }
Baham ko'rish
Klipbordga nusxa olish
\frac{5^{m}\times 5^{1}}{5^{-3}}=5^{1}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 3 va -2 ni qo‘shib, 1 ni oling.
5^{4}\times 5^{m}=5^{1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
5^{4}\times 5^{m}=5
1 daraja ko‘rsatkichini 5 ga hisoblang va 5 ni qiymatni oling.
625\times 5^{m}=5
4 daraja ko‘rsatkichini 5 ga hisoblang va 625 ni qiymatni oling.
5^{m}=\frac{5}{625}
Ikki tarafini 625 ga bo‘ling.
5^{m}=\frac{1}{125}
\frac{5}{625} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\log(5^{m})=\log(\frac{1}{125})
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
m\log(5)=\log(\frac{1}{125})
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
m=\frac{\log(\frac{1}{125})}{\log(5)}
Ikki tarafini \log(5) ga bo‘ling.
m=\log_{5}\left(\frac{1}{125}\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}