Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(5+i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 4-i.
\frac{\left(5+i\right)\left(4-i\right)}{4^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+i\right)\left(4-i\right)}{17}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{5\times 4+5\left(-i\right)+4i-i^{2}}{17}
Binomlarni ko‘paytirgandek 5+i va 4-i murakkab sonlarni ko‘paytiring.
\frac{5\times 4+5\left(-i\right)+4i-\left(-1\right)}{17}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{20-5i+4i+1}{17}
5\times 4+5\left(-i\right)+4i-\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{20+1+\left(-5+4\right)i}{17}
20-5i+4i+1 ichida real va mavhum qismlarni birlashtiring.
\frac{21-i}{17}
20+1+\left(-5+4\right)i ichida qo‘shishlarni bajaring.
\frac{21}{17}-\frac{1}{17}i
\frac{21}{17}-\frac{1}{17}i ni olish uchun 21-i ni 17 ga bo‘ling.
Re(\frac{\left(5+i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)})
\frac{5+i}{4+i}ning surat va maxrajini murakkab tutash maxraj 4-i bilan ko‘paytiring.
Re(\frac{\left(5+i\right)\left(4-i\right)}{4^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+i\right)\left(4-i\right)}{17})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{5\times 4+5\left(-i\right)+4i-i^{2}}{17})
Binomlarni ko‘paytirgandek 5+i va 4-i murakkab sonlarni ko‘paytiring.
Re(\frac{5\times 4+5\left(-i\right)+4i-\left(-1\right)}{17})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{20-5i+4i+1}{17})
5\times 4+5\left(-i\right)+4i-\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{20+1+\left(-5+4\right)i}{17})
20-5i+4i+1 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{21-i}{17})
20+1+\left(-5+4\right)i ichida qo‘shishlarni bajaring.
Re(\frac{21}{17}-\frac{1}{17}i)
\frac{21}{17}-\frac{1}{17}i ni olish uchun 21-i ni 17 ga bo‘ling.
\frac{21}{17}
\frac{21}{17}-\frac{1}{17}i ning real qismi – \frac{21}{17}.