Baholash
2+3i
Ashyoviy qism
2
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(5+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1+i.
\frac{\left(5+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+i\right)\left(1+i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{5\times 1+5i+i+i^{2}}{2}
Binomlarni ko‘paytirgandek 5+i va 1+i murakkab sonlarni ko‘paytiring.
\frac{5\times 1+5i+i-1}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{5+5i+i-1}{2}
5\times 1+5i+i-1 ichidagi ko‘paytirishlarni bajaring.
\frac{5-1+\left(5+1\right)i}{2}
5+5i+i-1 ichida real va mavhum qismlarni birlashtiring.
\frac{4+6i}{2}
5-1+\left(5+1\right)i ichida qo‘shishlarni bajaring.
2+3i
2+3i ni olish uchun 4+6i ni 2 ga bo‘ling.
Re(\frac{\left(5+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{5+i}{1-i}ning surat va maxrajini murakkab tutash maxraj 1+i bilan ko‘paytiring.
Re(\frac{\left(5+i\right)\left(1+i\right)}{1^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+i\right)\left(1+i\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{5\times 1+5i+i+i^{2}}{2})
Binomlarni ko‘paytirgandek 5+i va 1+i murakkab sonlarni ko‘paytiring.
Re(\frac{5\times 1+5i+i-1}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{5+5i+i-1}{2})
5\times 1+5i+i-1 ichidagi ko‘paytirishlarni bajaring.
Re(\frac{5-1+\left(5+1\right)i}{2})
5+5i+i-1 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{4+6i}{2})
5-1+\left(5+1\right)i ichida qo‘shishlarni bajaring.
Re(2+3i)
2+3i ni olish uchun 4+6i ni 2 ga bo‘ling.
2
2+3i ning real qismi – 2.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}