Baholash
-\frac{1}{10}+\frac{13}{10}i=-0,1+1,3i
Ashyoviy qism
-\frac{1}{10} = -0,1
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 2+4i.
\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3i\right)\left(2+4i\right)}{20}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20}
Binomlarni ko‘paytirgandek 5+3i va 2+4i murakkab sonlarni ko‘paytiring.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{10+20i+6i-12}{20}
5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{10-12+\left(20+6\right)i}{20}
10+20i+6i-12 ichida real va mavhum qismlarni birlashtiring.
\frac{-2+26i}{20}
10-12+\left(20+6\right)i ichida qo‘shishlarni bajaring.
-\frac{1}{10}+\frac{13}{10}i
-\frac{1}{10}+\frac{13}{10}i ni olish uchun -2+26i ni 20 ga bo‘ling.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)})
\frac{5+3i}{2-4i}ning surat va maxrajini murakkab tutash maxraj 2+4i bilan ko‘paytiring.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{20})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20})
Binomlarni ko‘paytirgandek 5+3i va 2+4i murakkab sonlarni ko‘paytiring.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{10+20i+6i-12}{20})
5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{10-12+\left(20+6\right)i}{20})
10+20i+6i-12 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{-2+26i}{20})
10-12+\left(20+6\right)i ichida qo‘shishlarni bajaring.
Re(-\frac{1}{10}+\frac{13}{10}i)
-\frac{1}{10}+\frac{13}{10}i ni olish uchun -2+26i ni 20 ga bo‘ling.
-\frac{1}{10}
-\frac{1}{10}+\frac{13}{10}i ning real qismi – -\frac{1}{10}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}