Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-4\right)\times 48+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
x qiymati -4,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x+4\right) ga, x+4,x-4 ning eng kichik karralisiga ko‘paytiring.
48x-192+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
x-4 ga 48 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
48x-192+48x+192=5\left(x-4\right)\left(x+4\right)
x+4 ga 48 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
96x-192+192=5\left(x-4\right)\left(x+4\right)
96x ni olish uchun 48x va 48x ni birlashtirish.
96x=5\left(x-4\right)\left(x+4\right)
0 olish uchun -192 va 192'ni qo'shing.
96x=\left(5x-20\right)\left(x+4\right)
5 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
96x=5x^{2}-80
5x-20 ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
96x-5x^{2}=-80
Ikkala tarafdan 5x^{2} ni ayirish.
96x-5x^{2}+80=0
80 ni ikki tarafga qo’shing.
-5x^{2}+96x+80=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-96±\sqrt{96^{2}-4\left(-5\right)\times 80}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 96 ni b va 80 ni c bilan almashtiring.
x=\frac{-96±\sqrt{9216-4\left(-5\right)\times 80}}{2\left(-5\right)}
96 kvadratini chiqarish.
x=\frac{-96±\sqrt{9216+20\times 80}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-96±\sqrt{9216+1600}}{2\left(-5\right)}
20 ni 80 marotabaga ko'paytirish.
x=\frac{-96±\sqrt{10816}}{2\left(-5\right)}
9216 ni 1600 ga qo'shish.
x=\frac{-96±104}{2\left(-5\right)}
10816 ning kvadrat ildizini chiqarish.
x=\frac{-96±104}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{8}{-10}
x=\frac{-96±104}{-10} tenglamasini yeching, bunda ± musbat. -96 ni 104 ga qo'shish.
x=-\frac{4}{5}
\frac{8}{-10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{200}{-10}
x=\frac{-96±104}{-10} tenglamasini yeching, bunda ± manfiy. -96 dan 104 ni ayirish.
x=20
-200 ni -10 ga bo'lish.
x=-\frac{4}{5} x=20
Tenglama yechildi.
\left(x-4\right)\times 48+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
x qiymati -4,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x+4\right) ga, x+4,x-4 ning eng kichik karralisiga ko‘paytiring.
48x-192+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
x-4 ga 48 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
48x-192+48x+192=5\left(x-4\right)\left(x+4\right)
x+4 ga 48 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
96x-192+192=5\left(x-4\right)\left(x+4\right)
96x ni olish uchun 48x va 48x ni birlashtirish.
96x=5\left(x-4\right)\left(x+4\right)
0 olish uchun -192 va 192'ni qo'shing.
96x=\left(5x-20\right)\left(x+4\right)
5 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
96x=5x^{2}-80
5x-20 ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
96x-5x^{2}=-80
Ikkala tarafdan 5x^{2} ni ayirish.
-5x^{2}+96x=-80
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}+96x}{-5}=-\frac{80}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\frac{96}{-5}x=-\frac{80}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{96}{5}x=-\frac{80}{-5}
96 ni -5 ga bo'lish.
x^{2}-\frac{96}{5}x=16
-80 ni -5 ga bo'lish.
x^{2}-\frac{96}{5}x+\left(-\frac{48}{5}\right)^{2}=16+\left(-\frac{48}{5}\right)^{2}
-\frac{96}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{48}{5} olish uchun. Keyin, -\frac{48}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{96}{5}x+\frac{2304}{25}=16+\frac{2304}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{48}{5} kvadratini chiqarish.
x^{2}-\frac{96}{5}x+\frac{2304}{25}=\frac{2704}{25}
16 ni \frac{2304}{25} ga qo'shish.
\left(x-\frac{48}{5}\right)^{2}=\frac{2704}{25}
x^{2}-\frac{96}{5}x+\frac{2304}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{48}{5}\right)^{2}}=\sqrt{\frac{2704}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{48}{5}=\frac{52}{5} x-\frac{48}{5}=-\frac{52}{5}
Qisqartirish.
x=20 x=-\frac{4}{5}
\frac{48}{5} ni tenglamaning ikkala tarafiga qo'shish.