x uchun yechish
x=4
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+1 ga ko'paytirish.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
x+1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-1=x^{2}+x-x-1
x+1 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-1=x^{2}-1
0 ni olish uchun x va -x ni birlashtirish.
4x-1-x^{2}=-1
Ikkala tarafdan x^{2} ni ayirish.
4x-1-x^{2}+1=0
1 ni ikki tarafga qo’shing.
4x-x^{2}=0
0 olish uchun -1 va 1'ni qo'shing.
-x^{2}+4x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 4 ni b va 0 ni c bilan almashtiring.
x=\frac{-4±4}{2\left(-1\right)}
4^{2} ning kvadrat ildizini chiqarish.
x=\frac{-4±4}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{0}{-2}
x=\frac{-4±4}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 4 ga qo'shish.
x=0
0 ni -2 ga bo'lish.
x=-\frac{8}{-2}
x=\frac{-4±4}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 4 ni ayirish.
x=4
-8 ni -2 ga bo'lish.
x=0 x=4
Tenglama yechildi.
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+1 ga ko'paytirish.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
x+1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-1=x^{2}+x-x-1
x+1 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-1=x^{2}-1
0 ni olish uchun x va -x ni birlashtirish.
4x-1-x^{2}=-1
Ikkala tarafdan x^{2} ni ayirish.
4x-x^{2}=-1+1
1 ni ikki tarafga qo’shing.
4x-x^{2}=0
0 olish uchun -1 va 1'ni qo'shing.
-x^{2}+4x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{0}{-1}
4 ni -1 ga bo'lish.
x^{2}-4x=0
0 ni -1 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=4
-2 kvadratini chiqarish.
\left(x-2\right)^{2}=4
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=2 x-2=-2
Qisqartirish.
x=4 x=0
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}