Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3\times 4x^{2}-2\times 33x+14=0
Tenglamaning ikkala tarafini 6 ga, 2,3,6 ning eng kichik karralisiga ko‘paytiring.
12x^{2}-2\times 33x+14=0
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
12x^{2}-66x+14=0
-66 hosil qilish uchun -2 va 33 ni ko'paytirish.
x=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\times 12\times 14}}{2\times 12}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 12 ni a, -66 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-66\right)±\sqrt{4356-4\times 12\times 14}}{2\times 12}
-66 kvadratini chiqarish.
x=\frac{-\left(-66\right)±\sqrt{4356-48\times 14}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-66\right)±\sqrt{4356-672}}{2\times 12}
-48 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-66\right)±\sqrt{3684}}{2\times 12}
4356 ni -672 ga qo'shish.
x=\frac{-\left(-66\right)±2\sqrt{921}}{2\times 12}
3684 ning kvadrat ildizini chiqarish.
x=\frac{66±2\sqrt{921}}{2\times 12}
-66 ning teskarisi 66 ga teng.
x=\frac{66±2\sqrt{921}}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{2\sqrt{921}+66}{24}
x=\frac{66±2\sqrt{921}}{24} tenglamasini yeching, bunda ± musbat. 66 ni 2\sqrt{921} ga qo'shish.
x=\frac{\sqrt{921}}{12}+\frac{11}{4}
66+2\sqrt{921} ni 24 ga bo'lish.
x=\frac{66-2\sqrt{921}}{24}
x=\frac{66±2\sqrt{921}}{24} tenglamasini yeching, bunda ± manfiy. 66 dan 2\sqrt{921} ni ayirish.
x=-\frac{\sqrt{921}}{12}+\frac{11}{4}
66-2\sqrt{921} ni 24 ga bo'lish.
x=\frac{\sqrt{921}}{12}+\frac{11}{4} x=-\frac{\sqrt{921}}{12}+\frac{11}{4}
Tenglama yechildi.
3\times 4x^{2}-2\times 33x+14=0
Tenglamaning ikkala tarafini 6 ga, 2,3,6 ning eng kichik karralisiga ko‘paytiring.
12x^{2}-2\times 33x+14=0
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
12x^{2}-66x+14=0
-66 hosil qilish uchun -2 va 33 ni ko'paytirish.
12x^{2}-66x=-14
Ikkala tarafdan 14 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{12x^{2}-66x}{12}=-\frac{14}{12}
Ikki tarafini 12 ga bo‘ling.
x^{2}+\left(-\frac{66}{12}\right)x=-\frac{14}{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=-\frac{14}{12}
\frac{-66}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{11}{2}x=-\frac{7}{6}
\frac{-14}{12} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{7}{6}+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{7}{6}+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{307}{48}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{6} ni \frac{121}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{11}{4}\right)^{2}=\frac{307}{48}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{307}{48}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{\sqrt{921}}{12} x-\frac{11}{4}=-\frac{\sqrt{921}}{12}
Qisqartirish.
x=\frac{\sqrt{921}}{12}+\frac{11}{4} x=-\frac{\sqrt{921}}{12}+\frac{11}{4}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.