x uchun yechish
x=\frac{\sqrt{58}}{6}+\frac{1}{3}\approx 1,602628851
x=-\frac{\sqrt{58}}{6}+\frac{1}{3}\approx -0,935962184
Grafik
Baham ko'rish
Klipbordga nusxa olish
3\left(4x+6\right)=\left(6x+2\right)\times 2x
x qiymati -\frac{1}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12\left(3x+1\right) ga, 12x+4,6 ning eng kichik karralisiga ko‘paytiring.
12x+18=\left(6x+2\right)\times 2x
3 ga 4x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x+18=\left(12x+4\right)x
6x+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x+18=12x^{2}+4x
12x+4 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x+18-12x^{2}=4x
Ikkala tarafdan 12x^{2} ni ayirish.
12x+18-12x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
8x+18-12x^{2}=0
8x ni olish uchun 12x va -4x ni birlashtirish.
-12x^{2}+8x+18=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\left(-12\right)\times 18}}{2\left(-12\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -12 ni a, 8 ni b va 18 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\left(-12\right)\times 18}}{2\left(-12\right)}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+48\times 18}}{2\left(-12\right)}
-4 ni -12 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64+864}}{2\left(-12\right)}
48 ni 18 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{928}}{2\left(-12\right)}
64 ni 864 ga qo'shish.
x=\frac{-8±4\sqrt{58}}{2\left(-12\right)}
928 ning kvadrat ildizini chiqarish.
x=\frac{-8±4\sqrt{58}}{-24}
2 ni -12 marotabaga ko'paytirish.
x=\frac{4\sqrt{58}-8}{-24}
x=\frac{-8±4\sqrt{58}}{-24} tenglamasini yeching, bunda ± musbat. -8 ni 4\sqrt{58} ga qo'shish.
x=-\frac{\sqrt{58}}{6}+\frac{1}{3}
-8+4\sqrt{58} ni -24 ga bo'lish.
x=\frac{-4\sqrt{58}-8}{-24}
x=\frac{-8±4\sqrt{58}}{-24} tenglamasini yeching, bunda ± manfiy. -8 dan 4\sqrt{58} ni ayirish.
x=\frac{\sqrt{58}}{6}+\frac{1}{3}
-8-4\sqrt{58} ni -24 ga bo'lish.
x=-\frac{\sqrt{58}}{6}+\frac{1}{3} x=\frac{\sqrt{58}}{6}+\frac{1}{3}
Tenglama yechildi.
3\left(4x+6\right)=\left(6x+2\right)\times 2x
x qiymati -\frac{1}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12\left(3x+1\right) ga, 12x+4,6 ning eng kichik karralisiga ko‘paytiring.
12x+18=\left(6x+2\right)\times 2x
3 ga 4x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x+18=\left(12x+4\right)x
6x+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x+18=12x^{2}+4x
12x+4 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x+18-12x^{2}=4x
Ikkala tarafdan 12x^{2} ni ayirish.
12x+18-12x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
8x+18-12x^{2}=0
8x ni olish uchun 12x va -4x ni birlashtirish.
8x-12x^{2}=-18
Ikkala tarafdan 18 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-12x^{2}+8x=-18
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-12x^{2}+8x}{-12}=-\frac{18}{-12}
Ikki tarafini -12 ga bo‘ling.
x^{2}+\frac{8}{-12}x=-\frac{18}{-12}
-12 ga bo'lish -12 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x=-\frac{18}{-12}
\frac{8}{-12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{3}x=\frac{3}{2}
\frac{-18}{-12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{3}{2}+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{29}{18}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{3}\right)^{2}=\frac{29}{18}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{29}{18}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{\sqrt{58}}{6} x-\frac{1}{3}=-\frac{\sqrt{58}}{6}
Qisqartirish.
x=\frac{\sqrt{58}}{6}+\frac{1}{3} x=-\frac{\sqrt{58}}{6}+\frac{1}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}