Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, -1-4i.
\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4i\left(-1-4i\right)}{17}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17}
4i ni -1-4i marotabaga ko'paytirish.
\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{16-4i}{17}
4i\left(-1\right)+4\left(-4\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
\frac{16}{17}-\frac{4}{17}i
\frac{16}{17}-\frac{4}{17}i ni olish uchun 16-4i ni 17 ga bo‘ling.
Re(\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)})
\frac{4i}{-1+4i}ning surat va maxrajini murakkab tutash maxraj -1-4i bilan ko‘paytiring.
Re(\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{4i\left(-1-4i\right)}{17})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17})
4i ni -1-4i marotabaga ko'paytirish.
Re(\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{16-4i}{17})
4i\left(-1\right)+4\left(-4\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
Re(\frac{16}{17}-\frac{4}{17}i)
\frac{16}{17}-\frac{4}{17}i ni olish uchun 16-4i ni 17 ga bo‘ling.
\frac{16}{17}
\frac{16}{17}-\frac{4}{17}i ning real qismi – \frac{16}{17}.