Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\frac{4-\sqrt{2}}{4+\sqrt{2}} maxrajini 4-\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Hisoblang: \left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{16-2}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
4 kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
14 olish uchun 16 dan 2 ni ayirish.
\frac{\left(4-\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\left(4-\sqrt{2}\right)^{2} hosil qilish uchun 4-\sqrt{2} va 4-\sqrt{2} ni ko'paytirish.
\frac{16-8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
\frac{16-8\sqrt{2}+2}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\sqrt{2} kvadrati – 2.
\frac{18-8\sqrt{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
18 olish uchun 16 va 2'ni qo'shing.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right)}
\frac{4+\sqrt{2}}{4-\sqrt{2}} maxrajini 4+\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
Hisoblang: \left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{16-2}
4 kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{14}
14 olish uchun 16 dan 2 ni ayirish.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)^{2}}{14}
\left(4+\sqrt{2}\right)^{2} hosil qilish uchun 4+\sqrt{2} va 4+\sqrt{2} ni ko'paytirish.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4+\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+2}{14}
\sqrt{2} kvadrati – 2.
\frac{18-8\sqrt{2}}{14}-\frac{18+8\sqrt{2}}{14}
18 olish uchun 16 va 2'ni qo'shing.
\frac{18-8\sqrt{2}-\left(18+8\sqrt{2}\right)}{14}
\frac{18-8\sqrt{2}}{14} va \frac{18+8\sqrt{2}}{14} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{18-8\sqrt{2}-18-8\sqrt{2}}{14}
18-8\sqrt{2}-\left(18+8\sqrt{2}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-16\sqrt{2}}{14}
18-8\sqrt{2}-18-8\sqrt{2} hisob-kitobini qiling.
-\frac{8}{7}\sqrt{2}
-\frac{8}{7}\sqrt{2} ni olish uchun -16\sqrt{2} ni 14 ga bo‘ling.