x uchun yechish
x = \frac{\sqrt{57} + 9}{2} \approx 8,274917218
x=\frac{9-\sqrt{57}}{2}\approx 0,725082782
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\times 4+\left(x-3\right)\times 2=x\left(x-3\right)
x qiymati 0,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-3\right) ga, x-3,x ning eng kichik karralisiga ko‘paytiring.
x\times 4+2x-6=x\left(x-3\right)
x-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x-6=x\left(x-3\right)
6x ni olish uchun x\times 4 va 2x ni birlashtirish.
6x-6=x^{2}-3x
x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x-6-x^{2}=-3x
Ikkala tarafdan x^{2} ni ayirish.
6x-6-x^{2}+3x=0
3x ni ikki tarafga qo’shing.
9x-6-x^{2}=0
9x ni olish uchun 6x va 3x ni birlashtirish.
-x^{2}+9x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 9 ni b va -6 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81+4\left(-6\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81-24}}{2\left(-1\right)}
4 ni -6 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{57}}{2\left(-1\right)}
81 ni -24 ga qo'shish.
x=\frac{-9±\sqrt{57}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{57}-9}{-2}
x=\frac{-9±\sqrt{57}}{-2} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{57} ga qo'shish.
x=\frac{9-\sqrt{57}}{2}
-9+\sqrt{57} ni -2 ga bo'lish.
x=\frac{-\sqrt{57}-9}{-2}
x=\frac{-9±\sqrt{57}}{-2} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{57} ni ayirish.
x=\frac{\sqrt{57}+9}{2}
-9-\sqrt{57} ni -2 ga bo'lish.
x=\frac{9-\sqrt{57}}{2} x=\frac{\sqrt{57}+9}{2}
Tenglama yechildi.
x\times 4+\left(x-3\right)\times 2=x\left(x-3\right)
x qiymati 0,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-3\right) ga, x-3,x ning eng kichik karralisiga ko‘paytiring.
x\times 4+2x-6=x\left(x-3\right)
x-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x-6=x\left(x-3\right)
6x ni olish uchun x\times 4 va 2x ni birlashtirish.
6x-6=x^{2}-3x
x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x-6-x^{2}=-3x
Ikkala tarafdan x^{2} ni ayirish.
6x-6-x^{2}+3x=0
3x ni ikki tarafga qo’shing.
9x-6-x^{2}=0
9x ni olish uchun 6x va 3x ni birlashtirish.
9x-x^{2}=6
6 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x^{2}+9x=6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=\frac{6}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{9}{-1}x=\frac{6}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-9x=\frac{6}{-1}
9 ni -1 ga bo'lish.
x^{2}-9x=-6
6 ni -1 ga bo'lish.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-6+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-9x+\frac{81}{4}=-6+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x^{2}-9x+\frac{81}{4}=\frac{57}{4}
-6 ni \frac{81}{4} ga qo'shish.
\left(x-\frac{9}{2}\right)^{2}=\frac{57}{4}
x^{2}-9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{57}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2}=\frac{\sqrt{57}}{2} x-\frac{9}{2}=-\frac{\sqrt{57}}{2}
Qisqartirish.
x=\frac{\sqrt{57}+9}{2} x=\frac{9-\sqrt{57}}{2}
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}