x uchun yechish
x = \frac{2 \sqrt{326} + 3}{35} \approx 1,117455433
x=\frac{3-2\sqrt{326}}{35}\approx -0,946026862
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\times 4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x-1,x+1 ning eng kichik karralisiga ko‘paytiring.
4x+4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
x+1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+4+2x-2=35\left(x-1\right)\left(x+1\right)
x-1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+4-2=35\left(x-1\right)\left(x+1\right)
6x ni olish uchun 4x va 2x ni birlashtirish.
6x+2=35\left(x-1\right)\left(x+1\right)
2 olish uchun 4 dan 2 ni ayirish.
6x+2=\left(35x-35\right)\left(x+1\right)
35 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+2=35x^{2}-35
35x-35 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6x+2-35x^{2}=-35
Ikkala tarafdan 35x^{2} ni ayirish.
6x+2-35x^{2}+35=0
35 ni ikki tarafga qo’shing.
6x+37-35x^{2}=0
37 olish uchun 2 va 35'ni qo'shing.
-35x^{2}+6x+37=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\left(-35\right)\times 37}}{2\left(-35\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -35 ni a, 6 ni b va 37 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-35\right)\times 37}}{2\left(-35\right)}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+140\times 37}}{2\left(-35\right)}
-4 ni -35 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+5180}}{2\left(-35\right)}
140 ni 37 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{5216}}{2\left(-35\right)}
36 ni 5180 ga qo'shish.
x=\frac{-6±4\sqrt{326}}{2\left(-35\right)}
5216 ning kvadrat ildizini chiqarish.
x=\frac{-6±4\sqrt{326}}{-70}
2 ni -35 marotabaga ko'paytirish.
x=\frac{4\sqrt{326}-6}{-70}
x=\frac{-6±4\sqrt{326}}{-70} tenglamasini yeching, bunda ± musbat. -6 ni 4\sqrt{326} ga qo'shish.
x=\frac{3-2\sqrt{326}}{35}
-6+4\sqrt{326} ni -70 ga bo'lish.
x=\frac{-4\sqrt{326}-6}{-70}
x=\frac{-6±4\sqrt{326}}{-70} tenglamasini yeching, bunda ± manfiy. -6 dan 4\sqrt{326} ni ayirish.
x=\frac{2\sqrt{326}+3}{35}
-6-4\sqrt{326} ni -70 ga bo'lish.
x=\frac{3-2\sqrt{326}}{35} x=\frac{2\sqrt{326}+3}{35}
Tenglama yechildi.
\left(x+1\right)\times 4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x-1,x+1 ning eng kichik karralisiga ko‘paytiring.
4x+4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
x+1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+4+2x-2=35\left(x-1\right)\left(x+1\right)
x-1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+4-2=35\left(x-1\right)\left(x+1\right)
6x ni olish uchun 4x va 2x ni birlashtirish.
6x+2=35\left(x-1\right)\left(x+1\right)
2 olish uchun 4 dan 2 ni ayirish.
6x+2=\left(35x-35\right)\left(x+1\right)
35 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+2=35x^{2}-35
35x-35 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6x+2-35x^{2}=-35
Ikkala tarafdan 35x^{2} ni ayirish.
6x-35x^{2}=-35-2
Ikkala tarafdan 2 ni ayirish.
6x-35x^{2}=-37
-37 olish uchun -35 dan 2 ni ayirish.
-35x^{2}+6x=-37
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-35x^{2}+6x}{-35}=-\frac{37}{-35}
Ikki tarafini -35 ga bo‘ling.
x^{2}+\frac{6}{-35}x=-\frac{37}{-35}
-35 ga bo'lish -35 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{6}{35}x=-\frac{37}{-35}
6 ni -35 ga bo'lish.
x^{2}-\frac{6}{35}x=\frac{37}{35}
-37 ni -35 ga bo'lish.
x^{2}-\frac{6}{35}x+\left(-\frac{3}{35}\right)^{2}=\frac{37}{35}+\left(-\frac{3}{35}\right)^{2}
-\frac{6}{35} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{35} olish uchun. Keyin, -\frac{3}{35} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{6}{35}x+\frac{9}{1225}=\frac{37}{35}+\frac{9}{1225}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{35} kvadratini chiqarish.
x^{2}-\frac{6}{35}x+\frac{9}{1225}=\frac{1304}{1225}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{37}{35} ni \frac{9}{1225} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{35}\right)^{2}=\frac{1304}{1225}
x^{2}-\frac{6}{35}x+\frac{9}{1225} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{35}\right)^{2}}=\sqrt{\frac{1304}{1225}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{35}=\frac{2\sqrt{326}}{35} x-\frac{3}{35}=-\frac{2\sqrt{326}}{35}
Qisqartirish.
x=\frac{2\sqrt{326}+3}{35} x=\frac{3-2\sqrt{326}}{35}
\frac{3}{35} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}