Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-3\right)\times 4-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
x qiymati -3,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+3\right) ga, x+3,3-x,x-3 ning eng kichik karralisiga ko‘paytiring.
4x-12-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
x-3 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-12-\left(-5\left(3+x\right)\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 hosil qilish uchun -1 va 5 ni ko'paytirish.
4x-12-\left(-15-5x\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 ga 3+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-12+15+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-15-5x teskarisini topish uchun har birining teskarisini toping.
4x+3+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
3 olish uchun -12 va 15'ni qo'shing.
9x+3=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
9x ni olish uchun 4x va 5x ni birlashtirish.
9x+3=x+3+\left(x^{2}-9\right)\left(-1\right)
x-3 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9x+3=x+3-x^{2}+9
x^{2}-9 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x+3=x+12-x^{2}
12 olish uchun 3 va 9'ni qo'shing.
9x+3-x=12-x^{2}
Ikkala tarafdan x ni ayirish.
8x+3=12-x^{2}
8x ni olish uchun 9x va -x ni birlashtirish.
8x+3-12=-x^{2}
Ikkala tarafdan 12 ni ayirish.
8x-9=-x^{2}
-9 olish uchun 3 dan 12 ni ayirish.
8x-9+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}+8x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va -9 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\left(-9\right)}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{100}}{2}
64 ni 36 ga qo'shish.
x=\frac{-8±10}{2}
100 ning kvadrat ildizini chiqarish.
x=\frac{2}{2}
x=\frac{-8±10}{2} tenglamasini yeching, bunda ± musbat. -8 ni 10 ga qo'shish.
x=1
2 ni 2 ga bo'lish.
x=-\frac{18}{2}
x=\frac{-8±10}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 10 ni ayirish.
x=-9
-18 ni 2 ga bo'lish.
x=1 x=-9
Tenglama yechildi.
\left(x-3\right)\times 4-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
x qiymati -3,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+3\right) ga, x+3,3-x,x-3 ning eng kichik karralisiga ko‘paytiring.
4x-12-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
x-3 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-12-\left(-5\left(3+x\right)\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 hosil qilish uchun -1 va 5 ni ko'paytirish.
4x-12-\left(-15-5x\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 ga 3+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-12+15+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-15-5x teskarisini topish uchun har birining teskarisini toping.
4x+3+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
3 olish uchun -12 va 15'ni qo'shing.
9x+3=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
9x ni olish uchun 4x va 5x ni birlashtirish.
9x+3=x+3+\left(x^{2}-9\right)\left(-1\right)
x-3 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9x+3=x+3-x^{2}+9
x^{2}-9 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x+3=x+12-x^{2}
12 olish uchun 3 va 9'ni qo'shing.
9x+3-x=12-x^{2}
Ikkala tarafdan x ni ayirish.
8x+3=12-x^{2}
8x ni olish uchun 9x va -x ni birlashtirish.
8x+3+x^{2}=12
x^{2} ni ikki tarafga qo’shing.
8x+x^{2}=12-3
Ikkala tarafdan 3 ni ayirish.
8x+x^{2}=9
9 olish uchun 12 dan 3 ni ayirish.
x^{2}+8x=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+4^{2}=9+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=9+16
4 kvadratini chiqarish.
x^{2}+8x+16=25
9 ni 16 ga qo'shish.
\left(x+4\right)^{2}=25
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=5 x+4=-5
Qisqartirish.
x=1 x=-9
Tenglamaning ikkala tarafidan 4 ni ayirish.