Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(2x-1\right)\times 4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
x qiymati -3,\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(2x-1\right)\left(x+3\right) ga, x+3,2x-1 ning eng kichik karralisiga ko‘paytiring.
8x-4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
2x-1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x-4+3x+9=\left(2x-1\right)\left(x+3\right)
x+3 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
11x-4+9=\left(2x-1\right)\left(x+3\right)
11x ni olish uchun 8x va 3x ni birlashtirish.
11x+5=\left(2x-1\right)\left(x+3\right)
5 olish uchun -4 va 9'ni qo'shing.
11x+5=2x^{2}+5x-3
2x-1 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
11x+5-2x^{2}=5x-3
Ikkala tarafdan 2x^{2} ni ayirish.
11x+5-2x^{2}-5x=-3
Ikkala tarafdan 5x ni ayirish.
6x+5-2x^{2}=-3
6x ni olish uchun 11x va -5x ni birlashtirish.
6x+5-2x^{2}+3=0
3 ni ikki tarafga qo’shing.
6x+8-2x^{2}=0
8 olish uchun 5 va 3'ni qo'shing.
-2x^{2}+6x+8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 6 ni b va 8 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-2\right)\times 8}}{2\left(-2\right)}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+8\times 8}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+64}}{2\left(-2\right)}
8 ni 8 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{100}}{2\left(-2\right)}
36 ni 64 ga qo'shish.
x=\frac{-6±10}{2\left(-2\right)}
100 ning kvadrat ildizini chiqarish.
x=\frac{-6±10}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{4}{-4}
x=\frac{-6±10}{-4} tenglamasini yeching, bunda ± musbat. -6 ni 10 ga qo'shish.
x=-1
4 ni -4 ga bo'lish.
x=-\frac{16}{-4}
x=\frac{-6±10}{-4} tenglamasini yeching, bunda ± manfiy. -6 dan 10 ni ayirish.
x=4
-16 ni -4 ga bo'lish.
x=-1 x=4
Tenglama yechildi.
\left(2x-1\right)\times 4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
x qiymati -3,\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(2x-1\right)\left(x+3\right) ga, x+3,2x-1 ning eng kichik karralisiga ko‘paytiring.
8x-4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
2x-1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x-4+3x+9=\left(2x-1\right)\left(x+3\right)
x+3 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
11x-4+9=\left(2x-1\right)\left(x+3\right)
11x ni olish uchun 8x va 3x ni birlashtirish.
11x+5=\left(2x-1\right)\left(x+3\right)
5 olish uchun -4 va 9'ni qo'shing.
11x+5=2x^{2}+5x-3
2x-1 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
11x+5-2x^{2}=5x-3
Ikkala tarafdan 2x^{2} ni ayirish.
11x+5-2x^{2}-5x=-3
Ikkala tarafdan 5x ni ayirish.
6x+5-2x^{2}=-3
6x ni olish uchun 11x va -5x ni birlashtirish.
6x-2x^{2}=-3-5
Ikkala tarafdan 5 ni ayirish.
6x-2x^{2}=-8
-8 olish uchun -3 dan 5 ni ayirish.
-2x^{2}+6x=-8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+6x}{-2}=-\frac{8}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{6}{-2}x=-\frac{8}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{8}{-2}
6 ni -2 ga bo'lish.
x^{2}-3x=4
-8 ni -2 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
4 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Qisqartirish.
x=4 x=-1
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.