t uchun yechish
t = -\frac{32}{11} = -2\frac{10}{11} \approx -2,909090909
Baham ko'rish
Klipbordga nusxa olish
6\times 4+6t\times \frac{7}{3}=6t\times \frac{1}{2}-2\times 4
t qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 6t ga, t,3,2,3t ning eng kichik karralisiga ko‘paytiring.
24+6t\times \frac{7}{3}=6t\times \frac{1}{2}-2\times 4
24 hosil qilish uchun 6 va 4 ni ko'paytirish.
24+14t=6t\times \frac{1}{2}-2\times 4
14 hosil qilish uchun 6 va \frac{7}{3} ni ko'paytirish.
24+14t=3t-2\times 4
3 hosil qilish uchun 6 va \frac{1}{2} ni ko'paytirish.
24+14t=3t-8
-8 hosil qilish uchun -2 va 4 ni ko'paytirish.
24+14t-3t=-8
Ikkala tarafdan 3t ni ayirish.
24+11t=-8
11t ni olish uchun 14t va -3t ni birlashtirish.
11t=-8-24
Ikkala tarafdan 24 ni ayirish.
11t=-32
-32 olish uchun -8 dan 24 ni ayirish.
t=\frac{-32}{11}
Ikki tarafini 11 ga bo‘ling.
t=-\frac{32}{11}
\frac{-32}{11} kasri manfiy belgini olib tashlash bilan -\frac{32}{11} sifatida qayta yozilishi mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}