k uchun yechish
k=\frac{49}{120}\approx 0,408333333
Baham ko'rish
Klipbordga nusxa olish
98\times 4\left(1+\frac{5}{98}k\right)=980k
k qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 98k ga, k,98 ning eng kichik karralisiga ko‘paytiring.
392\left(1+\frac{5}{98}k\right)=980k
392 hosil qilish uchun 98 va 4 ni ko'paytirish.
392+392\times \frac{5}{98}k=980k
392 ga 1+\frac{5}{98}k ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
392+\frac{392\times 5}{98}k=980k
392\times \frac{5}{98} ni yagona kasrga aylantiring.
392+\frac{1960}{98}k=980k
1960 hosil qilish uchun 392 va 5 ni ko'paytirish.
392+20k=980k
20 ni olish uchun 1960 ni 98 ga bo‘ling.
392+20k-980k=0
Ikkala tarafdan 980k ni ayirish.
392-960k=0
-960k ni olish uchun 20k va -980k ni birlashtirish.
-960k=-392
Ikkala tarafdan 392 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
k=\frac{-392}{-960}
Ikki tarafini -960 ga bo‘ling.
k=\frac{49}{120}
\frac{-392}{-960} ulushini -8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}