k uchun yechish
k=-\frac{1}{3}\approx -0,333333333
Baham ko'rish
Klipbordga nusxa olish
k\times 4+\left(k+1\right)\times 5=\left(k+1\right)\times 3
k qiymati -1,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini k\left(k+1\right) ga, k+1,k ning eng kichik karralisiga ko‘paytiring.
k\times 4+5k+5=\left(k+1\right)\times 3
k+1 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9k+5=\left(k+1\right)\times 3
9k ni olish uchun k\times 4 va 5k ni birlashtirish.
9k+5=3k+3
k+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9k+5-3k=3
Ikkala tarafdan 3k ni ayirish.
6k+5=3
6k ni olish uchun 9k va -3k ni birlashtirish.
6k=3-5
Ikkala tarafdan 5 ni ayirish.
6k=-2
-2 olish uchun 3 dan 5 ni ayirish.
k=\frac{-2}{6}
Ikki tarafini 6 ga bo‘ling.
k=-\frac{1}{3}
\frac{-2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}