Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4=-x^{2}+\frac{1}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
-x^{2}+\frac{1}{2}=4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-x^{2}=4-\frac{1}{2}
Ikkala tarafdan \frac{1}{2} ni ayirish.
-x^{2}=\frac{7}{2}
\frac{7}{2} olish uchun 4 dan \frac{1}{2} ni ayirish.
x^{2}=\frac{\frac{7}{2}}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}=\frac{7}{2\left(-1\right)}
\frac{\frac{7}{2}}{-1} ni yagona kasrga aylantiring.
x^{2}=\frac{7}{-2}
-2 hosil qilish uchun 2 va -1 ni ko'paytirish.
x^{2}=-\frac{7}{2}
\frac{7}{-2} kasri manfiy belgini olib tashlash bilan -\frac{7}{2} sifatida qayta yozilishi mumkin.
x=\frac{\sqrt{14}i}{2} x=-\frac{\sqrt{14}i}{2}
Tenglama yechildi.
4=-x^{2}+\frac{1}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
-x^{2}+\frac{1}{2}=4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-x^{2}+\frac{1}{2}-4=0
Ikkala tarafdan 4 ni ayirish.
-x^{2}-\frac{7}{2}=0
-\frac{7}{2} olish uchun \frac{1}{2} dan 4 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 0 ni b va -\frac{7}{2} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{4\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-14}}{2\left(-1\right)}
4 ni -\frac{7}{2} marotabaga ko'paytirish.
x=\frac{0±\sqrt{14}i}{2\left(-1\right)}
-14 ning kvadrat ildizini chiqarish.
x=\frac{0±\sqrt{14}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\frac{\sqrt{14}i}{2}
x=\frac{0±\sqrt{14}i}{-2} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{14}i}{2}
x=\frac{0±\sqrt{14}i}{-2} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{14}i}{2} x=\frac{\sqrt{14}i}{2}
Tenglama yechildi.