x uchun yechish (complex solution)
x=-\frac{\sqrt{14}i}{2}\approx -0-1,870828693i
x=\frac{\sqrt{14}i}{2}\approx 1,870828693i
Grafik
Viktorina
Polynomial
5xshash muammolar:
\frac { 4 } { 2 } = \frac { - x ^ { 2 } + \frac { 1 } { 2 } } { 2 }
Baham ko'rish
Klipbordga nusxa olish
4=-x^{2}+\frac{1}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
-x^{2}+\frac{1}{2}=4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-x^{2}=4-\frac{1}{2}
Ikkala tarafdan \frac{1}{2} ni ayirish.
-x^{2}=\frac{7}{2}
\frac{7}{2} olish uchun 4 dan \frac{1}{2} ni ayirish.
x^{2}=\frac{\frac{7}{2}}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}=\frac{7}{2\left(-1\right)}
\frac{\frac{7}{2}}{-1} ni yagona kasrga aylantiring.
x^{2}=\frac{7}{-2}
-2 hosil qilish uchun 2 va -1 ni ko'paytirish.
x^{2}=-\frac{7}{2}
\frac{7}{-2} kasri manfiy belgini olib tashlash bilan -\frac{7}{2} sifatida qayta yozilishi mumkin.
x=\frac{\sqrt{14}i}{2} x=-\frac{\sqrt{14}i}{2}
Tenglama yechildi.
4=-x^{2}+\frac{1}{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
-x^{2}+\frac{1}{2}=4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-x^{2}+\frac{1}{2}-4=0
Ikkala tarafdan 4 ni ayirish.
-x^{2}-\frac{7}{2}=0
-\frac{7}{2} olish uchun \frac{1}{2} dan 4 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 0 ni b va -\frac{7}{2} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{4\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-14}}{2\left(-1\right)}
4 ni -\frac{7}{2} marotabaga ko'paytirish.
x=\frac{0±\sqrt{14}i}{2\left(-1\right)}
-14 ning kvadrat ildizini chiqarish.
x=\frac{0±\sqrt{14}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\frac{\sqrt{14}i}{2}
x=\frac{0±\sqrt{14}i}{-2} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{14}i}{2}
x=\frac{0±\sqrt{14}i}{-2} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{14}i}{2} x=\frac{\sqrt{14}i}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}