Baholash
\frac{x-33}{\left(3-x\right)\left(x-1\right)}
x ga nisbatan hosilani topish
\frac{x^{2}-66x+129}{x^{4}-8x^{3}+22x^{2}-24x+9}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1}
24 hosil qilish uchun 4 va 6 ni ko'paytirish.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
Faktor: x^{2}-4x+3.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-3\right)\left(x-1\right) va 3-x ning eng kichik umumiy karralisi \left(x-3\right)\left(x-1\right). \frac{3}{3-x} ni \frac{-\left(x-1\right)}{-\left(x-1\right)} marotabaga ko'paytirish.
\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
\frac{24}{\left(x-3\right)\left(x-1\right)} va \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
24-3\left(-1\right)\left(x-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
24+3x-3 kabi iboralarga o‘xshab birlashtiring.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-3\right)\left(x-1\right) va x-1 ning eng kichik umumiy karralisi \left(x-3\right)\left(x-1\right). \frac{4}{x-1} ni \frac{x-3}{x-3} marotabaga ko'paytirish.
\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
\frac{21+3x}{\left(x-3\right)\left(x-1\right)} va \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)}
21+3x-4\left(x-3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{33-x}{\left(x-3\right)\left(x-1\right)}
21+3x-4x+12 kabi iboralarga o‘xshab birlashtiring.
\frac{33-x}{x^{2}-4x+3}
\left(x-3\right)\left(x-1\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1})
24 hosil qilish uchun 4 va 6 ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1})
Faktor: x^{2}-4x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-3\right)\left(x-1\right) va 3-x ning eng kichik umumiy karralisi \left(x-3\right)\left(x-1\right). \frac{3}{3-x} ni \frac{-\left(x-1\right)}{-\left(x-1\right)} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
\frac{24}{\left(x-3\right)\left(x-1\right)} va \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
24-3\left(-1\right)\left(x-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
24+3x-3 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-3\right)\left(x-1\right) va x-1 ning eng kichik umumiy karralisi \left(x-3\right)\left(x-1\right). \frac{4}{x-1} ni \frac{x-3}{x-3} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
\frac{21+3x}{\left(x-3\right)\left(x-1\right)} va \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)})
21+3x-4\left(x-3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{\left(x-3\right)\left(x-1\right)})
21+3x-4x+12 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{x^{2}-4x+3})
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{\left(x^{2}-4x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+33)-\left(-x^{1}+33\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}+3)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{1-1}-\left(-x^{1}+33\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Qisqartirish.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
x^{2}-4x^{1}+3 ni -x^{0} marotabaga ko'paytirish.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-4\right)x^{0}+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
-x^{1}+33 ni 2x^{1}-4x^{0} marotabaga ko'paytirish.
\frac{-x^{2}-4\left(-1\right)x^{1}+3\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-4x^{1}\right)+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{-x^{2}+4x^{1}-3x^{0}-\left(-2x^{2}+4x^{1}+66x^{1}-132x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Qisqartirish.
\frac{x^{2}-66x^{1}+129x^{0}}{\left(x^{2}-4x^{1}+3\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{x^{2}-66x+129x^{0}}{\left(x^{2}-4x+3\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{x^{2}-66x+129\times 1}{\left(x^{2}-4x+3\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{x^{2}-66x+129}{\left(x^{2}-4x+3\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}