Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+5\right)\times 360-x\times 360=x\left(x+5\right)
x qiymati -5,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+5\right) ga, x,x+5 ning eng kichik karralisiga ko‘paytiring.
360x+1800-x\times 360=x\left(x+5\right)
x+5 ga 360 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+1800-x\times 360=x^{2}+5x
x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+1800-x\times 360-x^{2}=5x
Ikkala tarafdan x^{2} ni ayirish.
360x+1800-x\times 360-x^{2}-5x=0
Ikkala tarafdan 5x ni ayirish.
355x+1800-x\times 360-x^{2}=0
355x ni olish uchun 360x va -5x ni birlashtirish.
355x+1800-360x-x^{2}=0
-360 hosil qilish uchun -1 va 360 ni ko'paytirish.
-5x+1800-x^{2}=0
-5x ni olish uchun 355x va -360x ni birlashtirish.
-x^{2}-5x+1800=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-5 ab=-1800=-1800
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -x^{2}+ax+bx+1800 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-1800 2,-900 3,-600 4,-450 5,-360 6,-300 8,-225 9,-200 10,-180 12,-150 15,-120 18,-100 20,-90 24,-75 25,-72 30,-60 36,-50 40,-45
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -1800-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-1800=-1799 2-900=-898 3-600=-597 4-450=-446 5-360=-355 6-300=-294 8-225=-217 9-200=-191 10-180=-170 12-150=-138 15-120=-105 18-100=-82 20-90=-70 24-75=-51 25-72=-47 30-60=-30 36-50=-14 40-45=-5
Har bir juftlik yigʻindisini hisoblang.
a=40 b=-45
Yechim – -5 yigʻindisini beruvchi juftlik.
\left(-x^{2}+40x\right)+\left(-45x+1800\right)
-x^{2}-5x+1800 ni \left(-x^{2}+40x\right)+\left(-45x+1800\right) sifatida qaytadan yozish.
x\left(-x+40\right)+45\left(-x+40\right)
Birinchi guruhda x ni va ikkinchi guruhda 45 ni faktordan chiqaring.
\left(-x+40\right)\left(x+45\right)
Distributiv funktsiyasidan foydalangan holda -x+40 umumiy terminini chiqaring.
x=40 x=-45
Tenglamani yechish uchun -x+40=0 va x+45=0 ni yeching.
\left(x+5\right)\times 360-x\times 360=x\left(x+5\right)
x qiymati -5,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+5\right) ga, x,x+5 ning eng kichik karralisiga ko‘paytiring.
360x+1800-x\times 360=x\left(x+5\right)
x+5 ga 360 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+1800-x\times 360=x^{2}+5x
x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+1800-x\times 360-x^{2}=5x
Ikkala tarafdan x^{2} ni ayirish.
360x+1800-x\times 360-x^{2}-5x=0
Ikkala tarafdan 5x ni ayirish.
355x+1800-x\times 360-x^{2}=0
355x ni olish uchun 360x va -5x ni birlashtirish.
355x+1800-360x-x^{2}=0
-360 hosil qilish uchun -1 va 360 ni ko'paytirish.
-5x+1800-x^{2}=0
-5x ni olish uchun 355x va -360x ni birlashtirish.
-x^{2}-5x+1800=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 1800}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -5 ni b va 1800 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\times 1800}}{2\left(-1\right)}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25+4\times 1800}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+7200}}{2\left(-1\right)}
4 ni 1800 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{7225}}{2\left(-1\right)}
25 ni 7200 ga qo'shish.
x=\frac{-\left(-5\right)±85}{2\left(-1\right)}
7225 ning kvadrat ildizini chiqarish.
x=\frac{5±85}{2\left(-1\right)}
-5 ning teskarisi 5 ga teng.
x=\frac{5±85}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{90}{-2}
x=\frac{5±85}{-2} tenglamasini yeching, bunda ± musbat. 5 ni 85 ga qo'shish.
x=-45
90 ni -2 ga bo'lish.
x=-\frac{80}{-2}
x=\frac{5±85}{-2} tenglamasini yeching, bunda ± manfiy. 5 dan 85 ni ayirish.
x=40
-80 ni -2 ga bo'lish.
x=-45 x=40
Tenglama yechildi.
\left(x+5\right)\times 360-x\times 360=x\left(x+5\right)
x qiymati -5,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+5\right) ga, x,x+5 ning eng kichik karralisiga ko‘paytiring.
360x+1800-x\times 360=x\left(x+5\right)
x+5 ga 360 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+1800-x\times 360=x^{2}+5x
x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+1800-x\times 360-x^{2}=5x
Ikkala tarafdan x^{2} ni ayirish.
360x+1800-x\times 360-x^{2}-5x=0
Ikkala tarafdan 5x ni ayirish.
355x+1800-x\times 360-x^{2}=0
355x ni olish uchun 360x va -5x ni birlashtirish.
355x-x\times 360-x^{2}=-1800
Ikkala tarafdan 1800 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
355x-360x-x^{2}=-1800
-360 hosil qilish uchun -1 va 360 ni ko'paytirish.
-5x-x^{2}=-1800
-5x ni olish uchun 355x va -360x ni birlashtirish.
-x^{2}-5x=-1800
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-5x}{-1}=-\frac{1800}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{5}{-1}\right)x=-\frac{1800}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+5x=-\frac{1800}{-1}
-5 ni -1 ga bo'lish.
x^{2}+5x=1800
-1800 ni -1 ga bo'lish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=1800+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=1800+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=\frac{7225}{4}
1800 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=\frac{7225}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{7225}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{85}{2} x+\frac{5}{2}=-\frac{85}{2}
Qisqartirish.
x=40 x=-45
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.