Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(n+2\right)\times 360+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
n qiymati -2,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(n-1\right)\left(n+2\right) ga, n-1,n+2 ning eng kichik karralisiga ko‘paytiring.
360n+720+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
n+2 ga 360 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360n+720+360n-360=6\left(n-1\right)\left(n+2\right)
n-1 ga 360 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
720n+720-360=6\left(n-1\right)\left(n+2\right)
720n ni olish uchun 360n va 360n ni birlashtirish.
720n+360=6\left(n-1\right)\left(n+2\right)
360 olish uchun 720 dan 360 ni ayirish.
720n+360=\left(6n-6\right)\left(n+2\right)
6 ga n-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
720n+360=6n^{2}+6n-12
6n-6 ga n+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
720n+360-6n^{2}=6n-12
Ikkala tarafdan 6n^{2} ni ayirish.
720n+360-6n^{2}-6n=-12
Ikkala tarafdan 6n ni ayirish.
714n+360-6n^{2}=-12
714n ni olish uchun 720n va -6n ni birlashtirish.
714n+360-6n^{2}+12=0
12 ni ikki tarafga qo’shing.
714n+372-6n^{2}=0
372 olish uchun 360 va 12'ni qo'shing.
-6n^{2}+714n+372=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-714±\sqrt{714^{2}-4\left(-6\right)\times 372}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, 714 ni b va 372 ni c bilan almashtiring.
n=\frac{-714±\sqrt{509796-4\left(-6\right)\times 372}}{2\left(-6\right)}
714 kvadratini chiqarish.
n=\frac{-714±\sqrt{509796+24\times 372}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
n=\frac{-714±\sqrt{509796+8928}}{2\left(-6\right)}
24 ni 372 marotabaga ko'paytirish.
n=\frac{-714±\sqrt{518724}}{2\left(-6\right)}
509796 ni 8928 ga qo'shish.
n=\frac{-714±18\sqrt{1601}}{2\left(-6\right)}
518724 ning kvadrat ildizini chiqarish.
n=\frac{-714±18\sqrt{1601}}{-12}
2 ni -6 marotabaga ko'paytirish.
n=\frac{18\sqrt{1601}-714}{-12}
n=\frac{-714±18\sqrt{1601}}{-12} tenglamasini yeching, bunda ± musbat. -714 ni 18\sqrt{1601} ga qo'shish.
n=\frac{119-3\sqrt{1601}}{2}
-714+18\sqrt{1601} ni -12 ga bo'lish.
n=\frac{-18\sqrt{1601}-714}{-12}
n=\frac{-714±18\sqrt{1601}}{-12} tenglamasini yeching, bunda ± manfiy. -714 dan 18\sqrt{1601} ni ayirish.
n=\frac{3\sqrt{1601}+119}{2}
-714-18\sqrt{1601} ni -12 ga bo'lish.
n=\frac{119-3\sqrt{1601}}{2} n=\frac{3\sqrt{1601}+119}{2}
Tenglama yechildi.
\left(n+2\right)\times 360+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
n qiymati -2,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(n-1\right)\left(n+2\right) ga, n-1,n+2 ning eng kichik karralisiga ko‘paytiring.
360n+720+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
n+2 ga 360 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360n+720+360n-360=6\left(n-1\right)\left(n+2\right)
n-1 ga 360 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
720n+720-360=6\left(n-1\right)\left(n+2\right)
720n ni olish uchun 360n va 360n ni birlashtirish.
720n+360=6\left(n-1\right)\left(n+2\right)
360 olish uchun 720 dan 360 ni ayirish.
720n+360=\left(6n-6\right)\left(n+2\right)
6 ga n-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
720n+360=6n^{2}+6n-12
6n-6 ga n+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
720n+360-6n^{2}=6n-12
Ikkala tarafdan 6n^{2} ni ayirish.
720n+360-6n^{2}-6n=-12
Ikkala tarafdan 6n ni ayirish.
714n+360-6n^{2}=-12
714n ni olish uchun 720n va -6n ni birlashtirish.
714n-6n^{2}=-12-360
Ikkala tarafdan 360 ni ayirish.
714n-6n^{2}=-372
-372 olish uchun -12 dan 360 ni ayirish.
-6n^{2}+714n=-372
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-6n^{2}+714n}{-6}=-\frac{372}{-6}
Ikki tarafini -6 ga bo‘ling.
n^{2}+\frac{714}{-6}n=-\frac{372}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
n^{2}-119n=-\frac{372}{-6}
714 ni -6 ga bo'lish.
n^{2}-119n=62
-372 ni -6 ga bo'lish.
n^{2}-119n+\left(-\frac{119}{2}\right)^{2}=62+\left(-\frac{119}{2}\right)^{2}
-119 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{119}{2} olish uchun. Keyin, -\frac{119}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-119n+\frac{14161}{4}=62+\frac{14161}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{119}{2} kvadratini chiqarish.
n^{2}-119n+\frac{14161}{4}=\frac{14409}{4}
62 ni \frac{14161}{4} ga qo'shish.
\left(n-\frac{119}{2}\right)^{2}=\frac{14409}{4}
n^{2}-119n+\frac{14161}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{119}{2}\right)^{2}}=\sqrt{\frac{14409}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{119}{2}=\frac{3\sqrt{1601}}{2} n-\frac{119}{2}=-\frac{3\sqrt{1601}}{2}
Qisqartirish.
n=\frac{3\sqrt{1601}+119}{2} n=\frac{119-3\sqrt{1601}}{2}
\frac{119}{2} ni tenglamaning ikkala tarafiga qo'shish.