x uchun yechish
x=-30
x=36
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { 36 } { x - 6 } - \frac { 36 } { x } = \frac { 1 } { 5 }
Baham ko'rish
Klipbordga nusxa olish
5x\times 36-\left(5x-30\right)\times 36=x\left(x-6\right)
x qiymati 0,6 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5x\left(x-6\right) ga, x-6,x,5 ning eng kichik karralisiga ko‘paytiring.
180x-\left(5x-30\right)\times 36=x\left(x-6\right)
180 hosil qilish uchun 5 va 36 ni ko'paytirish.
180x-\left(180x-1080\right)=x\left(x-6\right)
5x-30 ga 36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
180x-180x+1080=x\left(x-6\right)
180x-1080 teskarisini topish uchun har birining teskarisini toping.
1080=x\left(x-6\right)
0 ni olish uchun 180x va -180x ni birlashtirish.
1080=x^{2}-6x
x ga x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-6x=1080
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-6x-1080=0
Ikkala tarafdan 1080 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1080\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -1080 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1080\right)}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+4320}}{2}
-4 ni -1080 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{4356}}{2}
36 ni 4320 ga qo'shish.
x=\frac{-\left(-6\right)±66}{2}
4356 ning kvadrat ildizini chiqarish.
x=\frac{6±66}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{72}{2}
x=\frac{6±66}{2} tenglamasini yeching, bunda ± musbat. 6 ni 66 ga qo'shish.
x=36
72 ni 2 ga bo'lish.
x=-\frac{60}{2}
x=\frac{6±66}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 66 ni ayirish.
x=-30
-60 ni 2 ga bo'lish.
x=36 x=-30
Tenglama yechildi.
5x\times 36-\left(5x-30\right)\times 36=x\left(x-6\right)
x qiymati 0,6 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5x\left(x-6\right) ga, x-6,x,5 ning eng kichik karralisiga ko‘paytiring.
180x-\left(5x-30\right)\times 36=x\left(x-6\right)
180 hosil qilish uchun 5 va 36 ni ko'paytirish.
180x-\left(180x-1080\right)=x\left(x-6\right)
5x-30 ga 36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
180x-180x+1080=x\left(x-6\right)
180x-1080 teskarisini topish uchun har birining teskarisini toping.
1080=x\left(x-6\right)
0 ni olish uchun 180x va -180x ni birlashtirish.
1080=x^{2}-6x
x ga x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-6x=1080
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-6x+\left(-3\right)^{2}=1080+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=1080+9
-3 kvadratini chiqarish.
x^{2}-6x+9=1089
1080 ni 9 ga qo'shish.
\left(x-3\right)^{2}=1089
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1089}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=33 x-3=-33
Qisqartirish.
x=36 x=-30
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}