Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

34x^{2}-24x-1=0
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 34\left(-1\right)}}{2\times 34}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 34 ni a, -24 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 34\left(-1\right)}}{2\times 34}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576-136\left(-1\right)}}{2\times 34}
-4 ni 34 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{576+136}}{2\times 34}
-136 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{712}}{2\times 34}
576 ni 136 ga qo'shish.
x=\frac{-\left(-24\right)±2\sqrt{178}}{2\times 34}
712 ning kvadrat ildizini chiqarish.
x=\frac{24±2\sqrt{178}}{2\times 34}
-24 ning teskarisi 24 ga teng.
x=\frac{24±2\sqrt{178}}{68}
2 ni 34 marotabaga ko'paytirish.
x=\frac{2\sqrt{178}+24}{68}
x=\frac{24±2\sqrt{178}}{68} tenglamasini yeching, bunda ± musbat. 24 ni 2\sqrt{178} ga qo'shish.
x=\frac{\sqrt{178}}{34}+\frac{6}{17}
24+2\sqrt{178} ni 68 ga bo'lish.
x=\frac{24-2\sqrt{178}}{68}
x=\frac{24±2\sqrt{178}}{68} tenglamasini yeching, bunda ± manfiy. 24 dan 2\sqrt{178} ni ayirish.
x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
24-2\sqrt{178} ni 68 ga bo'lish.
x=\frac{\sqrt{178}}{34}+\frac{6}{17} x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
Tenglama yechildi.
34x^{2}-24x-1=0
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga ko'paytirish.
34x^{2}-24x=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{34x^{2}-24x}{34}=\frac{1}{34}
Ikki tarafini 34 ga bo‘ling.
x^{2}+\left(-\frac{24}{34}\right)x=\frac{1}{34}
34 ga bo'lish 34 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{12}{17}x=\frac{1}{34}
\frac{-24}{34} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{12}{17}x+\left(-\frac{6}{17}\right)^{2}=\frac{1}{34}+\left(-\frac{6}{17}\right)^{2}
-\frac{12}{17} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{6}{17} olish uchun. Keyin, -\frac{6}{17} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{12}{17}x+\frac{36}{289}=\frac{1}{34}+\frac{36}{289}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{6}{17} kvadratini chiqarish.
x^{2}-\frac{12}{17}x+\frac{36}{289}=\frac{89}{578}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{34} ni \frac{36}{289} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{6}{17}\right)^{2}=\frac{89}{578}
x^{2}-\frac{12}{17}x+\frac{36}{289} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{6}{17}\right)^{2}}=\sqrt{\frac{89}{578}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{6}{17}=\frac{\sqrt{178}}{34} x-\frac{6}{17}=-\frac{\sqrt{178}}{34}
Qisqartirish.
x=\frac{\sqrt{178}}{34}+\frac{6}{17} x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
\frac{6}{17} ni tenglamaning ikkala tarafiga qo'shish.