Baholash
2700
Omil
2^{2}\times 3^{3}\times 5^{2}
Baham ko'rish
Klipbordga nusxa olish
162\times 10^{2}\times \frac{5\times 10^{10}}{3\times 10^{11}}
Surat va maxrajdagi ikkala 2\times 10^{6} ni qisqartiring.
162\times 100\times \frac{5\times 10^{10}}{3\times 10^{11}}
2 daraja ko‘rsatkichini 10 ga hisoblang va 100 ni qiymatni oling.
16200\times \frac{5\times 10^{10}}{3\times 10^{11}}
16200 hosil qilish uchun 162 va 100 ni ko'paytirish.
16200\times \frac{5}{3\times 10}
Surat va maxrajdagi ikkala 10^{10} ni qisqartiring.
16200\times \frac{1}{2\times 3}
Surat va maxrajdagi ikkala 5 ni qisqartiring.
16200\times \frac{1}{6}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
\frac{16200}{6}
\frac{16200}{6} hosil qilish uchun 16200 va \frac{1}{6} ni ko'paytirish.
2700
2700 ni olish uchun 16200 ni 6 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}