y uchun yechish (complex solution)
y=-\frac{16x}{32-5x^{2}}
x\neq -\frac{4\sqrt{10}}{5}\text{ and }x\neq \frac{4\sqrt{10}}{5}\text{ and }x\neq 0
y uchun yechish
y=-\frac{16x}{32-5x^{2}}
|x|\neq \frac{4\sqrt{10}}{5}\text{ and }x\neq 0
x uchun yechish
x=-\frac{4\left(\sqrt{2\left(5y^{2}+2\right)}-2\right)}{5y}
x=\frac{4\sqrt{2}\left(\sqrt{5y^{2}+2}+\sqrt{2}\right)}{5y}\text{, }y\neq 0
Grafik
Baham ko'rish
Klipbordga nusxa olish
32y+x\times 16=5yx^{2}
Tenglamaning ikkala tarafini x^{2} ga, x^{2},x ning eng kichik karralisiga ko‘paytiring.
32y+x\times 16-5yx^{2}=0
Ikkala tarafdan 5yx^{2} ni ayirish.
32y-5yx^{2}=-x\times 16
Ikkala tarafdan x\times 16 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(32-5x^{2}\right)y=-x\times 16
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(32-5x^{2}\right)y=-16x
Tenglama standart shaklda.
\frac{\left(32-5x^{2}\right)y}{32-5x^{2}}=-\frac{16x}{32-5x^{2}}
Ikki tarafini -5x^{2}+32 ga bo‘ling.
y=-\frac{16x}{32-5x^{2}}
-5x^{2}+32 ga bo'lish -5x^{2}+32 ga ko'paytirishni bekor qiladi.
32y+x\times 16=5yx^{2}
Tenglamaning ikkala tarafini x^{2} ga, x^{2},x ning eng kichik karralisiga ko‘paytiring.
32y+x\times 16-5yx^{2}=0
Ikkala tarafdan 5yx^{2} ni ayirish.
32y-5yx^{2}=-x\times 16
Ikkala tarafdan x\times 16 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(32-5x^{2}\right)y=-x\times 16
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(32-5x^{2}\right)y=-16x
Tenglama standart shaklda.
\frac{\left(32-5x^{2}\right)y}{32-5x^{2}}=-\frac{16x}{32-5x^{2}}
Ikki tarafini -5x^{2}+32 ga bo‘ling.
y=-\frac{16x}{32-5x^{2}}
-5x^{2}+32 ga bo'lish -5x^{2}+32 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}