Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right)}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\frac{31\sqrt{2}+31\sqrt{5}}{2\sqrt{10}-3} maxrajini 2\sqrt{10}+3 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Hisoblang: \left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{2^{2}\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\left(2\sqrt{10}\right)^{2} ni kengaytirish.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\times 10-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\sqrt{10} kvadrati – 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
40 hosil qilish uchun 4 va 10 ni ko'paytirish.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-9}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
31 olish uchun 40 dan 9 ni ayirish.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right)}
\frac{62\sqrt{2}}{3-2\sqrt{10}} maxrajini 3+2\sqrt{10} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{3^{2}-\left(-2\sqrt{10}\right)^{2}}
Hisoblang: \left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\sqrt{10}\right)^{2}}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\right)^{2}\left(\sqrt{10}\right)^{2}}
\left(-2\sqrt{10}\right)^{2} ni kengaytirish.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\left(\sqrt{10}\right)^{2}}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\times 10}
\sqrt{10} kvadrati – 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-40}
40 hosil qilish uchun 4 va 10 ni ko'paytirish.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{-31}
-31 olish uchun 9 dan 40 ni ayirish.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\left(-2\sqrt{2}\left(3+2\sqrt{10}\right)\right)
-2\sqrt{2}\left(3+2\sqrt{10}\right) ni olish uchun 62\sqrt{2}\left(3+2\sqrt{10}\right) ni -31 ga bo‘ling.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
-2\sqrt{2}\left(3+2\sqrt{10}\right) ning teskarisi 2\sqrt{2}\left(3+2\sqrt{10}\right) ga teng.
\frac{62\sqrt{10}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
31\sqrt{2}+31\sqrt{5} ifodaning har bir elementini 2\sqrt{10}+3 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{62\sqrt{2}\sqrt{5}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Faktor: 10=2\times 5. \sqrt{2\times 5} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{5} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{62\times 2\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
124 hosil qilish uchun 62 va 2 ni ko'paytirish.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{5}\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Faktor: 10=5\times 2. \sqrt{5\times 2} koʻpaytmasining kvadrat ildizini \sqrt{5}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{124\sqrt{5}+93\sqrt{2}+62\times 5\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
5 hosil qilish uchun \sqrt{5} va \sqrt{5} ni ko'paytirish.
\frac{124\sqrt{5}+93\sqrt{2}+310\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
310 hosil qilish uchun 62 va 5 ni ko'paytirish.
\frac{124\sqrt{5}+403\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
403\sqrt{2} ni olish uchun 93\sqrt{2} va 310\sqrt{2} ni birlashtirish.
\frac{217\sqrt{5}+403\sqrt{2}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
217\sqrt{5} ni olish uchun 124\sqrt{5} va 93\sqrt{5} ni birlashtirish.
7\sqrt{5}+13\sqrt{2}+2\sqrt{2}\left(3+2\sqrt{10}\right)
7\sqrt{5}+13\sqrt{2} natijani olish uchun 217\sqrt{5}+403\sqrt{2} ning har bir ifodasini 31 ga bo‘ling.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{10}\sqrt{2}
2\sqrt{2} ga 3+2\sqrt{10} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{2}\sqrt{5}\sqrt{2}
Faktor: 10=2\times 5. \sqrt{2\times 5} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{5} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\times 2\sqrt{5}
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+8\sqrt{5}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
7\sqrt{5}+19\sqrt{2}+8\sqrt{5}
19\sqrt{2} ni olish uchun 13\sqrt{2} va 6\sqrt{2} ni birlashtirish.
15\sqrt{5}+19\sqrt{2}
15\sqrt{5} ni olish uchun 7\sqrt{5} va 8\sqrt{5} ni birlashtirish.