Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x^{2}-x+1\right)\times 30+\left(x-1\right)\left(7-18x\right)=\left(x^{2}-1\right)\times 13
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right) ga, x^{2}-1,x^{3}+1,x^{2}-x+1 ning eng kichik karralisiga ko‘paytiring.
30x^{2}-30x+30+\left(x-1\right)\left(7-18x\right)=\left(x^{2}-1\right)\times 13
x^{2}-x+1 ga 30 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
30x^{2}-30x+30+25x-18x^{2}-7=\left(x^{2}-1\right)\times 13
x-1 ga 7-18x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
30x^{2}-5x+30-18x^{2}-7=\left(x^{2}-1\right)\times 13
-5x ni olish uchun -30x va 25x ni birlashtirish.
12x^{2}-5x+30-7=\left(x^{2}-1\right)\times 13
12x^{2} ni olish uchun 30x^{2} va -18x^{2} ni birlashtirish.
12x^{2}-5x+23=\left(x^{2}-1\right)\times 13
23 olish uchun 30 dan 7 ni ayirish.
12x^{2}-5x+23=13x^{2}-13
x^{2}-1 ga 13 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x^{2}-5x+23-13x^{2}=-13
Ikkala tarafdan 13x^{2} ni ayirish.
-x^{2}-5x+23=-13
-x^{2} ni olish uchun 12x^{2} va -13x^{2} ni birlashtirish.
-x^{2}-5x+23+13=0
13 ni ikki tarafga qo’shing.
-x^{2}-5x+36=0
36 olish uchun 23 va 13'ni qo'shing.
a+b=-5 ab=-36=-36
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -x^{2}+ax+bx+36 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-36 2,-18 3,-12 4,-9 6,-6
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -36-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Har bir juftlik yigʻindisini hisoblang.
a=4 b=-9
Yechim – -5 yigʻindisini beruvchi juftlik.
\left(-x^{2}+4x\right)+\left(-9x+36\right)
-x^{2}-5x+36 ni \left(-x^{2}+4x\right)+\left(-9x+36\right) sifatida qaytadan yozish.
x\left(-x+4\right)+9\left(-x+4\right)
Birinchi guruhda x ni va ikkinchi guruhda 9 ni faktordan chiqaring.
\left(-x+4\right)\left(x+9\right)
Distributiv funktsiyasidan foydalangan holda -x+4 umumiy terminini chiqaring.
x=4 x=-9
Tenglamani yechish uchun -x+4=0 va x+9=0 ni yeching.
\left(x^{2}-x+1\right)\times 30+\left(x-1\right)\left(7-18x\right)=\left(x^{2}-1\right)\times 13
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right) ga, x^{2}-1,x^{3}+1,x^{2}-x+1 ning eng kichik karralisiga ko‘paytiring.
30x^{2}-30x+30+\left(x-1\right)\left(7-18x\right)=\left(x^{2}-1\right)\times 13
x^{2}-x+1 ga 30 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
30x^{2}-30x+30+25x-18x^{2}-7=\left(x^{2}-1\right)\times 13
x-1 ga 7-18x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
30x^{2}-5x+30-18x^{2}-7=\left(x^{2}-1\right)\times 13
-5x ni olish uchun -30x va 25x ni birlashtirish.
12x^{2}-5x+30-7=\left(x^{2}-1\right)\times 13
12x^{2} ni olish uchun 30x^{2} va -18x^{2} ni birlashtirish.
12x^{2}-5x+23=\left(x^{2}-1\right)\times 13
23 olish uchun 30 dan 7 ni ayirish.
12x^{2}-5x+23=13x^{2}-13
x^{2}-1 ga 13 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x^{2}-5x+23-13x^{2}=-13
Ikkala tarafdan 13x^{2} ni ayirish.
-x^{2}-5x+23=-13
-x^{2} ni olish uchun 12x^{2} va -13x^{2} ni birlashtirish.
-x^{2}-5x+23+13=0
13 ni ikki tarafga qo’shing.
-x^{2}-5x+36=0
36 olish uchun 23 va 13'ni qo'shing.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 36}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -5 ni b va 36 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\times 36}}{2\left(-1\right)}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25+4\times 36}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\left(-1\right)}
4 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\left(-1\right)}
25 ni 144 ga qo'shish.
x=\frac{-\left(-5\right)±13}{2\left(-1\right)}
169 ning kvadrat ildizini chiqarish.
x=\frac{5±13}{2\left(-1\right)}
-5 ning teskarisi 5 ga teng.
x=\frac{5±13}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{18}{-2}
x=\frac{5±13}{-2} tenglamasini yeching, bunda ± musbat. 5 ni 13 ga qo'shish.
x=-9
18 ni -2 ga bo'lish.
x=-\frac{8}{-2}
x=\frac{5±13}{-2} tenglamasini yeching, bunda ± manfiy. 5 dan 13 ni ayirish.
x=4
-8 ni -2 ga bo'lish.
x=-9 x=4
Tenglama yechildi.
\left(x^{2}-x+1\right)\times 30+\left(x-1\right)\left(7-18x\right)=\left(x^{2}-1\right)\times 13
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right) ga, x^{2}-1,x^{3}+1,x^{2}-x+1 ning eng kichik karralisiga ko‘paytiring.
30x^{2}-30x+30+\left(x-1\right)\left(7-18x\right)=\left(x^{2}-1\right)\times 13
x^{2}-x+1 ga 30 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
30x^{2}-30x+30+25x-18x^{2}-7=\left(x^{2}-1\right)\times 13
x-1 ga 7-18x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
30x^{2}-5x+30-18x^{2}-7=\left(x^{2}-1\right)\times 13
-5x ni olish uchun -30x va 25x ni birlashtirish.
12x^{2}-5x+30-7=\left(x^{2}-1\right)\times 13
12x^{2} ni olish uchun 30x^{2} va -18x^{2} ni birlashtirish.
12x^{2}-5x+23=\left(x^{2}-1\right)\times 13
23 olish uchun 30 dan 7 ni ayirish.
12x^{2}-5x+23=13x^{2}-13
x^{2}-1 ga 13 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x^{2}-5x+23-13x^{2}=-13
Ikkala tarafdan 13x^{2} ni ayirish.
-x^{2}-5x+23=-13
-x^{2} ni olish uchun 12x^{2} va -13x^{2} ni birlashtirish.
-x^{2}-5x=-13-23
Ikkala tarafdan 23 ni ayirish.
-x^{2}-5x=-36
-36 olish uchun -13 dan 23 ni ayirish.
\frac{-x^{2}-5x}{-1}=-\frac{36}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{5}{-1}\right)x=-\frac{36}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+5x=-\frac{36}{-1}
-5 ni -1 ga bo'lish.
x^{2}+5x=36
-36 ni -1 ga bo'lish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=36+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=36+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=\frac{169}{4}
36 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=\frac{169}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{13}{2} x+\frac{5}{2}=-\frac{13}{2}
Qisqartirish.
x=4 x=-9
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.