b uchun yechish
\left\{\begin{matrix}b=-\frac{mn}{3z-fm}\text{, }&m\neq 0\text{ and }n\neq 0\text{ and }z\neq \frac{fm}{3}\\b\neq 0\text{, }&z=\frac{fm}{3}\text{ and }n=0\text{ and }m\neq 0\end{matrix}\right,
f uchun yechish
f=\frac{3bz+mn}{bm}
m\neq 0\text{ and }b\neq 0
Baham ko'rish
Klipbordga nusxa olish
b\times 3z+mn=fbm
b qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini bm ga, m,b ning eng kichik karralisiga ko‘paytiring.
b\times 3z+mn-fbm=0
Ikkala tarafdan fbm ni ayirish.
b\times 3z-fbm=-mn
Ikkala tarafdan mn ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(3z-fm\right)b=-mn
b'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3z-fm\right)b}{3z-fm}=-\frac{mn}{3z-fm}
Ikki tarafini 3z-mf ga bo‘ling.
b=-\frac{mn}{3z-fm}
3z-mf ga bo'lish 3z-mf ga ko'paytirishni bekor qiladi.
b=-\frac{mn}{3z-fm}\text{, }b\neq 0
b qiymati 0 teng bo‘lmaydi.
b\times 3z+mn=fbm
Tenglamaning ikkala tarafini bm ga, m,b ning eng kichik karralisiga ko‘paytiring.
fbm=b\times 3z+mn
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
bmf=3bz+mn
Tenglama standart shaklda.
\frac{bmf}{bm}=\frac{3bz+mn}{bm}
Ikki tarafini bm ga bo‘ling.
f=\frac{3bz+mn}{bm}
bm ga bo'lish bm ga ko'paytirishni bekor qiladi.
f=\frac{n}{b}+\frac{3z}{m}
3zb+nm ni bm ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}