x uchun yechish
x=4
x = \frac{11}{2} = 5\frac{1}{2} = 5,5
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { 3 x - 8 } { x - 2 } = \frac { 5 x - 2 } { x + 5 }
Baham ko'rish
Klipbordga nusxa olish
\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
x qiymati -5,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+5\right) ga, x-2,x+5 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
x+5 ga 3x-8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+7x-40=5x^{2}-12x+4
x-2 ga 5x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+7x-40-5x^{2}=-12x+4
Ikkala tarafdan 5x^{2} ni ayirish.
-2x^{2}+7x-40=-12x+4
-2x^{2} ni olish uchun 3x^{2} va -5x^{2} ni birlashtirish.
-2x^{2}+7x-40+12x=4
12x ni ikki tarafga qo’shing.
-2x^{2}+19x-40=4
19x ni olish uchun 7x va 12x ni birlashtirish.
-2x^{2}+19x-40-4=0
Ikkala tarafdan 4 ni ayirish.
-2x^{2}+19x-44=0
-44 olish uchun -40 dan 4 ni ayirish.
x=\frac{-19±\sqrt{19^{2}-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 19 ni b va -44 ni c bilan almashtiring.
x=\frac{-19±\sqrt{361-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
19 kvadratini chiqarish.
x=\frac{-19±\sqrt{361+8\left(-44\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-19±\sqrt{361-352}}{2\left(-2\right)}
8 ni -44 marotabaga ko'paytirish.
x=\frac{-19±\sqrt{9}}{2\left(-2\right)}
361 ni -352 ga qo'shish.
x=\frac{-19±3}{2\left(-2\right)}
9 ning kvadrat ildizini chiqarish.
x=\frac{-19±3}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{16}{-4}
x=\frac{-19±3}{-4} tenglamasini yeching, bunda ± musbat. -19 ni 3 ga qo'shish.
x=4
-16 ni -4 ga bo'lish.
x=-\frac{22}{-4}
x=\frac{-19±3}{-4} tenglamasini yeching, bunda ± manfiy. -19 dan 3 ni ayirish.
x=\frac{11}{2}
\frac{-22}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=4 x=\frac{11}{2}
Tenglama yechildi.
\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
x qiymati -5,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+5\right) ga, x-2,x+5 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
x+5 ga 3x-8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+7x-40=5x^{2}-12x+4
x-2 ga 5x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+7x-40-5x^{2}=-12x+4
Ikkala tarafdan 5x^{2} ni ayirish.
-2x^{2}+7x-40=-12x+4
-2x^{2} ni olish uchun 3x^{2} va -5x^{2} ni birlashtirish.
-2x^{2}+7x-40+12x=4
12x ni ikki tarafga qo’shing.
-2x^{2}+19x-40=4
19x ni olish uchun 7x va 12x ni birlashtirish.
-2x^{2}+19x=4+40
40 ni ikki tarafga qo’shing.
-2x^{2}+19x=44
44 olish uchun 4 va 40'ni qo'shing.
\frac{-2x^{2}+19x}{-2}=\frac{44}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{19}{-2}x=\frac{44}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{19}{2}x=\frac{44}{-2}
19 ni -2 ga bo'lish.
x^{2}-\frac{19}{2}x=-22
44 ni -2 ga bo'lish.
x^{2}-\frac{19}{2}x+\left(-\frac{19}{4}\right)^{2}=-22+\left(-\frac{19}{4}\right)^{2}
-\frac{19}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{4} olish uchun. Keyin, -\frac{19}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{19}{2}x+\frac{361}{16}=-22+\frac{361}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{4} kvadratini chiqarish.
x^{2}-\frac{19}{2}x+\frac{361}{16}=\frac{9}{16}
-22 ni \frac{361}{16} ga qo'shish.
\left(x-\frac{19}{4}\right)^{2}=\frac{9}{16}
x^{2}-\frac{19}{2}x+\frac{361}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{4}=\frac{3}{4} x-\frac{19}{4}=-\frac{3}{4}
Qisqartirish.
x=\frac{11}{2} x=4
\frac{19}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}