x uchun yechish
x=\frac{1}{2}=0,5
x=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
x qiymati -5,-2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+2\right)\left(x+5\right) ga, x+5,x+2 ning eng kichik karralisiga ko‘paytiring.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
x+2 ga 3x-7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-x-14=x^{2}+2x-15
x+5 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-x-14-x^{2}=2x-15
Ikkala tarafdan x^{2} ni ayirish.
2x^{2}-x-14=2x-15
2x^{2} ni olish uchun 3x^{2} va -x^{2} ni birlashtirish.
2x^{2}-x-14-2x=-15
Ikkala tarafdan 2x ni ayirish.
2x^{2}-3x-14=-15
-3x ni olish uchun -x va -2x ni birlashtirish.
2x^{2}-3x-14+15=0
15 ni ikki tarafga qo’shing.
2x^{2}-3x+1=0
1 olish uchun -14 va 15'ni qo'shing.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -3 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2\times 2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{1}}{2\times 2}
9 ni -8 ga qo'shish.
x=\frac{-\left(-3\right)±1}{2\times 2}
1 ning kvadrat ildizini chiqarish.
x=\frac{3±1}{2\times 2}
-3 ning teskarisi 3 ga teng.
x=\frac{3±1}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4}{4}
x=\frac{3±1}{4} tenglamasini yeching, bunda ± musbat. 3 ni 1 ga qo'shish.
x=1
4 ni 4 ga bo'lish.
x=\frac{2}{4}
x=\frac{3±1}{4} tenglamasini yeching, bunda ± manfiy. 3 dan 1 ni ayirish.
x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=\frac{1}{2}
Tenglama yechildi.
\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
x qiymati -5,-2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+2\right)\left(x+5\right) ga, x+5,x+2 ning eng kichik karralisiga ko‘paytiring.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
x+2 ga 3x-7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-x-14=x^{2}+2x-15
x+5 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-x-14-x^{2}=2x-15
Ikkala tarafdan x^{2} ni ayirish.
2x^{2}-x-14=2x-15
2x^{2} ni olish uchun 3x^{2} va -x^{2} ni birlashtirish.
2x^{2}-x-14-2x=-15
Ikkala tarafdan 2x ni ayirish.
2x^{2}-3x-14=-15
-3x ni olish uchun -x va -2x ni birlashtirish.
2x^{2}-3x=-15+14
14 ni ikki tarafga qo’shing.
2x^{2}-3x=-1
-1 olish uchun -15 va 14'ni qo'shing.
\frac{2x^{2}-3x}{2}=-\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{4} olish uchun. Keyin, -\frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{4} kvadratini chiqarish.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{2} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Qisqartirish.
x=1 x=\frac{1}{2}
\frac{3}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}