Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(6x-8\right)\left(3x-4\right)+14\times 7=35\left(3x-4\right)
x qiymati \frac{4}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 14\left(3x-4\right) ga, 7,3x-4,2 ning eng kichik karralisiga ko‘paytiring.
18x^{2}-48x+32+14\times 7=35\left(3x-4\right)
6x-8 ga 3x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
18x^{2}-48x+32+98=35\left(3x-4\right)
98 hosil qilish uchun 14 va 7 ni ko'paytirish.
18x^{2}-48x+130=35\left(3x-4\right)
130 olish uchun 32 va 98'ni qo'shing.
18x^{2}-48x+130=105x-140
35 ga 3x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18x^{2}-48x+130-105x=-140
Ikkala tarafdan 105x ni ayirish.
18x^{2}-153x+130=-140
-153x ni olish uchun -48x va -105x ni birlashtirish.
18x^{2}-153x+130+140=0
140 ni ikki tarafga qo’shing.
18x^{2}-153x+270=0
270 olish uchun 130 va 140'ni qo'shing.
x=\frac{-\left(-153\right)±\sqrt{\left(-153\right)^{2}-4\times 18\times 270}}{2\times 18}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 18 ni a, -153 ni b va 270 ni c bilan almashtiring.
x=\frac{-\left(-153\right)±\sqrt{23409-4\times 18\times 270}}{2\times 18}
-153 kvadratini chiqarish.
x=\frac{-\left(-153\right)±\sqrt{23409-72\times 270}}{2\times 18}
-4 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-153\right)±\sqrt{23409-19440}}{2\times 18}
-72 ni 270 marotabaga ko'paytirish.
x=\frac{-\left(-153\right)±\sqrt{3969}}{2\times 18}
23409 ni -19440 ga qo'shish.
x=\frac{-\left(-153\right)±63}{2\times 18}
3969 ning kvadrat ildizini chiqarish.
x=\frac{153±63}{2\times 18}
-153 ning teskarisi 153 ga teng.
x=\frac{153±63}{36}
2 ni 18 marotabaga ko'paytirish.
x=\frac{216}{36}
x=\frac{153±63}{36} tenglamasini yeching, bunda ± musbat. 153 ni 63 ga qo'shish.
x=6
216 ni 36 ga bo'lish.
x=\frac{90}{36}
x=\frac{153±63}{36} tenglamasini yeching, bunda ± manfiy. 153 dan 63 ni ayirish.
x=\frac{5}{2}
\frac{90}{36} ulushini 18 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=6 x=\frac{5}{2}
Tenglama yechildi.
\left(6x-8\right)\left(3x-4\right)+14\times 7=35\left(3x-4\right)
x qiymati \frac{4}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 14\left(3x-4\right) ga, 7,3x-4,2 ning eng kichik karralisiga ko‘paytiring.
18x^{2}-48x+32+14\times 7=35\left(3x-4\right)
6x-8 ga 3x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
18x^{2}-48x+32+98=35\left(3x-4\right)
98 hosil qilish uchun 14 va 7 ni ko'paytirish.
18x^{2}-48x+130=35\left(3x-4\right)
130 olish uchun 32 va 98'ni qo'shing.
18x^{2}-48x+130=105x-140
35 ga 3x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18x^{2}-48x+130-105x=-140
Ikkala tarafdan 105x ni ayirish.
18x^{2}-153x+130=-140
-153x ni olish uchun -48x va -105x ni birlashtirish.
18x^{2}-153x=-140-130
Ikkala tarafdan 130 ni ayirish.
18x^{2}-153x=-270
-270 olish uchun -140 dan 130 ni ayirish.
\frac{18x^{2}-153x}{18}=-\frac{270}{18}
Ikki tarafini 18 ga bo‘ling.
x^{2}+\left(-\frac{153}{18}\right)x=-\frac{270}{18}
18 ga bo'lish 18 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{17}{2}x=-\frac{270}{18}
\frac{-153}{18} ulushini 9 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{17}{2}x=-15
-270 ni 18 ga bo'lish.
x^{2}-\frac{17}{2}x+\left(-\frac{17}{4}\right)^{2}=-15+\left(-\frac{17}{4}\right)^{2}
-\frac{17}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{17}{4} olish uchun. Keyin, -\frac{17}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{17}{2}x+\frac{289}{16}=-15+\frac{289}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{17}{4} kvadratini chiqarish.
x^{2}-\frac{17}{2}x+\frac{289}{16}=\frac{49}{16}
-15 ni \frac{289}{16} ga qo'shish.
\left(x-\frac{17}{4}\right)^{2}=\frac{49}{16}
x^{2}-\frac{17}{2}x+\frac{289}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{17}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{17}{4}=\frac{7}{4} x-\frac{17}{4}=-\frac{7}{4}
Qisqartirish.
x=6 x=\frac{5}{2}
\frac{17}{4} ni tenglamaning ikkala tarafiga qo'shish.