y uchun yechish (complex solution)
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0\text{ and }x\neq \frac{5+\sqrt{35}i}{3}\text{ and }x\neq \frac{-\sqrt{35}i+5}{3}
y uchun yechish
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0
x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{5}\left(\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{; }x=\frac{\sqrt{5}\left(-\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\neq 0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{\sqrt{5y}\left(\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{; }x=\frac{\sqrt{5y}\left(-\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\leq \frac{40}{7}\text{ and }y>0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
Grafik
Viktorina
Algebra
5xshash muammolar:
\frac { 3 x } { 5 } + \frac { 4 } { x } - \frac { 2 x } { y } = 2
Baham ko'rish
Klipbordga nusxa olish
xy\times 3x+5y\times 4-5x\times 2x=10xy
y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5xy ga, 5,x,y ning eng kichik karralisiga ko‘paytiring.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}y\times 3+20y-5x\times 2x=10xy
20 hosil qilish uchun 5 va 4 ni ko'paytirish.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}y\times 3+20y-10x^{2}=10xy
10 hosil qilish uchun 5 va 2 ni ko'paytirish.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Ikkala tarafdan 10xy ni ayirish.
x^{2}y\times 3+20y-10xy=10x^{2}
10x^{2} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(3x^{2}-10x+20\right)y=10x^{2}
Tenglama standart shaklda.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Ikki tarafini 3x^{2}-10x+20 ga bo‘ling.
y=\frac{10x^{2}}{3x^{2}-10x+20}
3x^{2}-10x+20 ga bo'lish 3x^{2}-10x+20 ga ko'paytirishni bekor qiladi.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
y qiymati 0 teng bo‘lmaydi.
xy\times 3x+5y\times 4-5x\times 2x=10xy
y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5xy ga, 5,x,y ning eng kichik karralisiga ko‘paytiring.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}y\times 3+20y-5x\times 2x=10xy
20 hosil qilish uchun 5 va 4 ni ko'paytirish.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}y\times 3+20y-10x^{2}=10xy
10 hosil qilish uchun 5 va 2 ni ko'paytirish.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Ikkala tarafdan 10xy ni ayirish.
x^{2}y\times 3+20y-10xy=10x^{2}
10x^{2} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(3x^{2}-10x+20\right)y=10x^{2}
Tenglama standart shaklda.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Ikki tarafini 3x^{2}-10x+20 ga bo‘ling.
y=\frac{10x^{2}}{3x^{2}-10x+20}
3x^{2}-10x+20 ga bo'lish 3x^{2}-10x+20 ga ko'paytirishni bekor qiladi.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
y qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}