x uchun yechish
x = \frac{\sqrt{337} + 1}{6} \approx 3,226259958
x=\frac{1-\sqrt{337}}{6}\approx -2,892926625
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\times 3x-4\left(5-x\right)=8\left(x+1\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x+1\right) ga, 4,x+1 ning eng kichik karralisiga ko‘paytiring.
\left(3x+3\right)x-4\left(5-x\right)=8\left(x+1\right)
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x-4\left(5-x\right)=8\left(x+1\right)
3x+3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x-20+4x=8\left(x+1\right)
-4 ga 5-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+7x-20=8\left(x+1\right)
7x ni olish uchun 3x va 4x ni birlashtirish.
3x^{2}+7x-20=8x+8
8 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+7x-20-8x=8
Ikkala tarafdan 8x ni ayirish.
3x^{2}-x-20=8
-x ni olish uchun 7x va -8x ni birlashtirish.
3x^{2}-x-20-8=0
Ikkala tarafdan 8 ni ayirish.
3x^{2}-x-28=0
-28 olish uchun -20 dan 8 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-28\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -1 ni b va -28 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-28\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+336}}{2\times 3}
-12 ni -28 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{337}}{2\times 3}
1 ni 336 ga qo'shish.
x=\frac{1±\sqrt{337}}{2\times 3}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{337}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{337}+1}{6}
x=\frac{1±\sqrt{337}}{6} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{337} ga qo'shish.
x=\frac{1-\sqrt{337}}{6}
x=\frac{1±\sqrt{337}}{6} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{337} ni ayirish.
x=\frac{\sqrt{337}+1}{6} x=\frac{1-\sqrt{337}}{6}
Tenglama yechildi.
\left(x+1\right)\times 3x-4\left(5-x\right)=8\left(x+1\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x+1\right) ga, 4,x+1 ning eng kichik karralisiga ko‘paytiring.
\left(3x+3\right)x-4\left(5-x\right)=8\left(x+1\right)
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x-4\left(5-x\right)=8\left(x+1\right)
3x+3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x-20+4x=8\left(x+1\right)
-4 ga 5-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+7x-20=8\left(x+1\right)
7x ni olish uchun 3x va 4x ni birlashtirish.
3x^{2}+7x-20=8x+8
8 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+7x-20-8x=8
Ikkala tarafdan 8x ni ayirish.
3x^{2}-x-20=8
-x ni olish uchun 7x va -8x ni birlashtirish.
3x^{2}-x=8+20
20 ni ikki tarafga qo’shing.
3x^{2}-x=28
28 olish uchun 8 va 20'ni qo'shing.
\frac{3x^{2}-x}{3}=\frac{28}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{1}{3}x=\frac{28}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{28}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{28}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{337}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{28}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{6}\right)^{2}=\frac{337}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{337}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{\sqrt{337}}{6} x-\frac{1}{6}=-\frac{\sqrt{337}}{6}
Qisqartirish.
x=\frac{\sqrt{337}+1}{6} x=\frac{1-\sqrt{337}}{6}
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}